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Abstract

In this paper, we develop statistical risk model tools for a portfolio of private capi-
tal funds, which enable us to estimate one-year Value-at-Risks for these portfolios.
More specifically, we offer two complementary approaches (historical and Monte-
Carlo) to simulate probability distributions of returns for various, heterogeneous
alternative asset portfolios. These methods incorporate both macroeconomic (re-
spectively public market data) and fund specific input parameters (risk factors) in
order to come up with a sound risk estimate for an investor’s “exposure to private
capital”. However, much effort has to be expended beforehand to define a proper
risk and performance measure for an illiquid asset class like private equity. The
comprehensive model is composed of several sub-modules, which draw on various
types of regression-, simulation- and statistical learning methods. Throughout the
entire paper, we will repeatedly establish links between our findings and the new
Solvency II framework.

Keywords: Private Capital Risk Model, Alternative Asset Portfolio Analysis, One-
Year Value-at-Risk, Historical Simulation, Monte-Carlo Simulation, Solvency II
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1 Introduction

Private equity/capital has the notorious reputation of being a quasi-mystical
asset class offering the compelling combination of high return potentials
associated with relatively low (systematic) risk exposures. Naturally, in
the financial community, there are manifold views on this bold statement.
Some research findings even consider the “alleged superiority of private eq-
uity/capital” as a big misunderstanding. So, in this paper, we want to shed
light on the general question regarding the “true” return and risk profile
of private capital funds (PCFs) with the striking feature of a hypothetical
(risk) horizon of just one year. This involves unique analysis, since most
commonly private capital research focuses on multi-year horizons to cover
the overall (cash-flow based) performance of the private and thus illiquid
investment-vehicles. While PCF studies with intermediate horizons (of one
year) come with several straits, the biggest upsides are (a) the better com-
parability to publicly traded assets and (b) the compatibility to the new
Solvency II framework. Solvency II is an EU-wide insurer regulation har-
monizing and amending the risk management of all insurance undertakings,
operating within the European Union. A key ingredient in this framework is
the determination of the “Solvency Capital Requirement” (SCR), which in-
surance companies must hold to alleviate the risk of insolvency. In the course
of this treatise, we aim at developing customized statistical risk models to
assess the appropriate SCR for insurers’ interests in PCFs.

Conveniently, the quantitative PCF risk modeling approaches, presented
in this paper, are accompanied by some promising scientific findings. Our
major academic contributions are

1. the investigation of PCF performance over one-year horizons by means
of returns (RNAV ) calculated with intermediate fund valuations called
Net Asset Values (NAVs),

2. the development of linear multi-factor-models, i.e. implicitly identify-
ing risk factors, to decompose R

NAV ’s for various PCF-types by draw-
ing on a well-established econometric approach (and adapting it to
PCF peculiarities), and

3. the comparison of historical and Monte Carlo simulation procedures
to estimate the overall RNAV -distribution for portfolios composed of
several PCFs.

Whereas most related articles in the finance literature primarily address the
performance of aggregated (private capital) asset classes, we devise method-
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ologies with a rigorous and position-based risk management emphasis tai-
lored for PCF investments (especially when they are recognized in insurers’
balance sheets). However, the stochastic models are readily applicable to
other settings besides Solvency II, as the algorithms used for simulating re-
turn distributions of mixed (alternative) investment portfolios are fairly uni-
versal. Once the comprehensive return distribution is known, the full range
of risk measures like Value at Risk (VaR), volatility, etc. can be derived
easily.

Section 2 provides a brief (qualitative) overview of (2.1) private capital
basics (like definitions, characteristics, and terminology), and (2.2) the most
relevant paragraphs of the Solvency II legislation. In Section 3 the (3.1) pri-
vate capital fund and (3.2) public market data, used in analysis throughout
the paper, is introduced. In Section 4 models for replicating PCF portfolio
returns are developed. After defining an appropriate risk variable and mea-
sure in Section 4.1, a feasible historical PCF portfolio simulation approach
is discussed in Section 4.2. Next, regression-based factor-models for various
PCF-types are specified in Section 4.3, which serve as building blocks for the
Monte Carlo simulation procedure presented in Section 4.4. Section 5 fea-
tures mainly Monte Carlo model results, application, and examples. Section
6 finally concludes.

All data manipulations and statistical computations used for model de-
velopment, analysis or simulation are implemented in the popular program-
ming language R.

2 Private Capital in the Solvency II Framework

2.1 Alternative Investments and Private Capital

2.1.1 Taxonomy and Definitions

This thesis studies the risk of private capital funds. Unfortunately, there are
no universal definitions for terms like alternative assets or private capital. It
is rather common that various financial practitioners, advisors, and scientists
establish their own taxonomy to categorize securities in the alternative in-
vestment (AI) universe in alignment with their specific needs and objectives.
A good starting point for delineating AIs is [CABK15] Chapter 1 “What is
an Alternative Investment”, where several methods for identifying alternative
investments are suggested. On the one hand, AIs can be defined by exclu-
sion, i.e. considering “any investment that is not simply a long position in
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traditional investments” alternative (see [CABK15], p. 3). BlackRock, the
world’s largest asset manager, partly shares this (rather vague) conception,
stating, that alternative investments may not be regarded as an own unique
asset class; rather “alternatives represent different approaches to investing
across a variety of markets and asset classes.”1 On the other hand, AI def-
initions by inclusion can be used, where all perceived AI-types have to be
listed explicitly; e.g. [CABK15] determine four distinct categories

1. Real assets (including natural resources, commodities, real estate, in-
frastructure, and intellectual property)

2. Hedge funds (including managed futures)

3. Private equity (including mezzanine and distressed debt)

4. Structured products (including credit derivatives)

for AIs (see [CABK15], p. 4). Categorizing (alternative) investments in rigid
schemes may in many cases be problematic, as every classification proposal
probably lacks a certain sub-category. With the general ambiguities in mind,
we define the term “Private Capital Fund” (PCF) straightforward by focusing
rather on the fund investment style than the fund’s underlying assets.

Private Capital Fund The term “Private Capital Fund” is used throughout
this paper for funds, i.e. investment vehicles, pursuing a particular - private
equity like - investment style, which is briefly characterized by the following
points2:

1. Limited Partnerships: Private capital funds are established as fi-
nancial intermediaries between investor and investment and are com-
monly structured as limited partnerships. The general partner (GP),
in most cases an asset management firm, serves as investment-fund-
manager and the limited partners (LPs) are several (institutional) in-
vestors, who provide the bulk of the capital for the partnership’s un-
dertakings.

2. Commitment: Limited partners do not deposit their share in the
partnership at inception. Rather they commit a certain investment

1 See BlackRock’s market commentary “10 myths surrounding alternative investments”
(URL: https://www.blackrock.com/au/individual/literature/market-commentary/10-
myths-about-alternative-investments-2015-au.pdf).

2 These points are depicted in [MM05] Chapter 2.1 in greater detail, where the main
features of private equity funds are described nicely.
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amount up front. Then each time a new investment is transacted or
costs, fees, etc. have to be paid, only the required proportion of the
committed capital is called to finance the expenses.

3. Contributions: These capital draw-downs are called contributions
(to the private capital fund). As most of the investments, which are
typically acquisitions of controlling stakes in private companies, are
conducted in the first 4-5 years of a fund’s lifetime, the main part of
the contributions should occur in this period.

4. Distributions: At later times the investments are harvested. The
proceeds in form of dividends, interest payments or cash from divest-
ments are distributed to the limited partners as soon as practical. All
investments have to be realized within the contractually limited life-
time of a private capital fund; that are typically 10 years, sometimes
with a provision for extension of 2-3 years.

5. Closed-end funds: Committing capital to a private capital fund is
therefore clearly a long-term investment with a self-liquidating feature.

6. Illiquidity: As there is little, if any, opportunity for redemption of
contributed or even yet undrawn committed capital, the illiquidity of
both the share in the limited partnership and the underlying “private”
assets is a crucial characteristic of every private capital fund invest-
ment.

7. Net Asset Value: Assets held by a private capital fund are not
registered or publicly traded on an exchange. Thus, no market value
exists for those per definition. Therefore, the general partner provides
subjective (maybe stale) valuations (called NAVs) of the fund’s un-
derlying securities on a quarterly basis, to inform his limited partners
about the current status of fund investments.

8. Cost Structure: General partners may enjoy a lavish compensation
for their investment services. Management fees often range from 1.5%
to 2.5% per annum for current assets under management. Additionally,
“carried interest” of typically 20% of the profits, exceeding a pre-agreed
“hurdle rate”, serves as an incentive for the general partner.

Hence, the fund investment style, characterized by the eight points above
(and thus not by the underlying fund assets), is the acceptance criteria for
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determining PCFs. Concretely, there are PCFs investing in real assets, pri-
vate equity, and private debt3.

2.1.2 Valuation and Recognition

The valuation and financial recognition of (current) private capital invest-
ments may be a demanding practice for general and especially for limited
partners. This problem is recognized both in the academic literature and
in the relevant accounting laws. Moreover, there are several practical val-
uation guidelines for private equity/capital issued by different alternative
investment associations.4 They all turn on the two main questions:

1. How should the general partner determine net asset values?

2. How should the limited partner recognize his private capital invest-
ments on his balance sheet?

These two points collapse for the private capital investor to one issue: to
what extent can he trust the NAV reported by the general partner. On that
score [CGW10] claim in their introduction:

“Disclosure of performance to the investor is burdened by two
main difficulties. On one hand, valuation requires sufficient in-
formation on the performance of the firm, whereas on the other
hand, even if sufficient information is available, PE firms may
choose to disclose information strategically.” (see [CGW10] p.
335)

This statement gives rise to doubts, that NAV figures may constitute a fair
value representation of private capital investments, given the latitude the
GP usually has in reckoning NAV figures. The validity concerns remain
after looking into the world’s two most commonly used general accounting
standards, which are US-GAAP and IFRS. Alas, they do not share the same
notion about using net asset values as “expedient” for accounting purposes.
This is addressed explicitly in the “Basis for conclusions on IFRS 13 Fair
Value Measurement”:

3 Further readings conveying a detailed overview of AI and PCFs are [MM05, CGW10,
CABK15, BCK12].

4 See e.g. International Private Equity and Venture Capital Valuation
Guidelines (Edition December 2015) for a comprehensive treatment of “cur-
rent best practice, on the valuation of private equity Investments.” (URL:
http://www.privateequityvaluation.com/download/i/mark_dl/u/4012990401/4625734325/
151222%20IPEV%20Valuation%20Guidelines%20December%202015%20Final.pdf)
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“There are different accounting requirements in IFRSs and US-
GAAP for measuring the fair value of investments in investment
companies. Topic 946 Financial Services—Investment Compa-
nies in US-GAAP requires an investment company to recognize
its underlying investments at fair value at each reporting period.
Topic 820 provides a practical expedient that permits an entity
with an investment in an investment company to use as a mea-
sure of fair value in specific circumstances the reported net as-
set value without adjustment. IFRS 10 Consolidated Financial
Statements requires an investment company to consolidate its
controlled underlying investments. Because IFRSs do not have
accounting requirements that are specific to investment compa-
nies, the IASB decided that it would be difficult to identify when
such a practical expedient could be applied given the different
practices for calculating net asset values in jurisdictions around
the world.”5

So, IFRS regulations do not ultimately dictate under which circumstances
the net asset value may be used for financial accounting, as these more
or less leave the issue intentionally open. But, by implication, the IFRS
accounting standard setter can imagine situations, where at cost valuation
methodologies for private capital investments are more appropriate (than
using NAVs). This at cost recognition would obviously be more compatible
to the caution principle6 anchored in german accounting laws. The opposite
attitude towards recognition at net asset value is displayed in US-GAAP,
as it allows this proceeding as a “practical expedient” (see: US-GAAP ASC
820). In summary, HGB, IFRS, and even US-GAAP can hardly disguise
their suspicion towards reported net asset values and, unsurprisingly, this
view is affirmed by academic and practical discussions.

2.2 Structure of Solvency II Risk Models

2.2.1 Solvency II Legislation

Solvency II is a project of the European Commission for a fundamental
reform of insurance supervision in Europe, especially the solvency rules con-

5 See IFRS 13 BC 238(a) (URL: https://www.casrilanka.com/casl/images/ sto-
ries/content/publications/publications/accounting_ standards/ifrs/40._ifrs_13_-
_fair_value_measurement. pdf).

6 The german Vorsichtsprinzip is an essential principle in the Handelsgesetzbuch (see:
§252 1(4) HGB).
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cerning equity capital adequacy of insurance and reinsurance companies.
Therefore it aims for a prospective and risk-based supervisory approach.
The essential Solvency II legislation consists of Directive 2009/138/EC and
Commission Delegated Regulation (EU) 2015/35. These two legislative texts
have to be incorporated into national laws by European Union member states
by January 2016.7

Three Pillar Structure Similar to the Basel II banking regulations the
Solvency II framework consists of three main pillars:

• Pillar 1 gives (rather quantitative) provisions for calculating risk
measures for re/insurance undertakings, like the Minimum Capital Re-
quirement (MCR) and Solvency Capital Requirement (SCR). Thereby
MCR and SCR can be regarded as soft and hard floors respectively
because the MCR is less demanding than the SCR as “the Minimum
Capital Requirement shall neither fall below 25% nor exceed 45% of
the undertaking’s Solvency Capital Requirement” (see Article 129 (3)
of Directive 2009/138/EC). Here, clearly, the SCR is of higher impor-
tance, as it deals with the more adverse situations. For SCR calculation
each insurance company may choose between adopting the “standard
formula” (see Section 2.2.2) or developing a full or partial “internal
model” (see Section 2.2.3).

• Pillar 2 addresses (rather qualitative) governance and risk manage-
ment standards for re/insurers. Here, the regulator requires a “regular
supervisory reporting”, which consist of an “Own-risk and solvency as-
sessment supervisory report” (ORSA) among others. This ORSA re-
port aims at ensuring a complete and holistic risk perception, exhibited
from management or supervisory bodies, and therefore shall present
“the qualitative and quantitative results of the own risk and solvency
assessment and the conclusions drawn by the insurance or reinsurance
undertaking from those results” (see Article 306 (a) of Commission
Delegated Regulation (EU) 2015/35).

• Pillar 3 sets out some disclosure and transparency requirements for
re/insurance undertakings.

Asset Valuation Unfortunately, the Solvency II legislation does not remedy
the difficulties associated with private capital asset valuation and recognition

7 E.g., the german “Gesetz zur Modernisierung der Finanzaufsicht über Versicherungen”
entered into force as from 1. January 2016.
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discussed in Section 2.1.2. Generally, the valuation standards in the Solvency
II framework are similar to IFRS (see Article 9 of Commission Delegated
Regulation (EU) 2015/35). This becomes exemplarily apparent in Article
75 1(a) of Directive 2009/138/EC, which specifies the fundamental asset
valuation principle in the Solvency II framework, thus “assets shall be valued
at the amount for which they could be exchanged between knowledgeable
willing parties in an arm’s length transaction”.

The Commission Delegated Regulation (EU) 2015/35 defines the distinct
valuation methodologies more precisely. In Article 10 (7) three approaches
for “alternative valuation methods” are listed, which shall be applied, if
quoted market prices for a given asset are not observable:

• market approach

• income approach

• cost approach

Undeniable, this requirement is rather vague and abstract, as we can argue,
that the general partner will probably use one (or more) of these methods
to determine the limited partnership’s net asset value. Consequently, this
provision may suggest adopting private capital fund NAVs as economically
reasonable expedients, i.e. value proxies, in the Solvency II framework.

Solvency Capital Requirement The calculation of the SCR can be re-
garded as the heart of Pillar 1, as the regulator demands in Article 100 of
Directive 2009/138/EC, that the “Member States shall require that insurance
and reinsurance undertakings hold eligible own funds covering the Solvency
Capital Requirement.” In order to ensure this precept, the “Solvency Cap-
ital Requirement shall be calibrated so as to ensure that all quantifiable
risks to which an insurance or reinsurance undertaking is exposed are taken
into account. It shall cover existing business, as well as the new business
expected to be written over the following 12 months. With respect to ex-
isting business, it shall cover only unexpected losses. It shall correspond
to the Value-at-Risk of the basic own funds of an insurance or reinsurance
undertaking subject to a confidence level of 99,5% over a one-year period”
(see Article 101 (3) of Directive 2009/138/EC). As mentioned above, the
regulator grants insurers two options to calculate this 99,5% Value-at-Risk;
either the standard formula can be applied or individual internal modeling
approaches may be expended to come up with an own risk estimate.
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Solvency Capital Requirement (SCR)

Basis Solvency Capital Requirement (BSCR) Adj. Op.

Market Health Default Life Non-Life Intangible
Interest Rate

... ... ... ... ...

Equity
Property
Spread

Currency
Concentration

Tab. 1: The overall structure of the SCR standard formula.

2.2.2 Standard Formula

The essential structure of the SCR standard formula is specified in Article
103 and 104 of Directive 2009/138/EC in combination with Article 87 of
Commission Delegated Regulation (EU) 2015/35. The relevant parts of the
overall model structure are outlined in Table 1, to illustrate the modular ap-
proach underlying the SCR calculation. All modules are then aggregated in a
next step by using predefined correlation matrices to capture diversification
effects (see Annex IV of Directive 2009/138/EC).

Naturally, as we are concerned with private capital we have to take
a closer look at the Market Risk module (see Article 168 of Commission
Delegated Regulation (EU) 2015/35), and there especially into the Equity
sub-modules, which is highlighted in Table 2. Here a distinction between
Type 1 and 2 Equities becomes evident, as these two classes are exposed
to different “instantaneous decreases” in the standard formula (see Article
169 of Commission Delegated Regulation (EU) 2015/35).8 Furthermore, the
residual/remainder-character of Type 2 Equities should be emphasized, as
they “shall also comprise all assets other than those covered in the interest
rate risk sub-module, the property risk sub-module or the spread risk sub-
module, including the assets and indirect exposures referred to in Article
84(1) and (2) where a look-through approach is not possible” (see Article
168 (3) of Commission Delegated Regulation (EU) 2015/35). This Look-
through approach, which rules that “the Solvency Capital Requirement shall
be calculated on the basis of each of the underlying assets of collective invest-
ment undertakings and other investments packaged as funds”, is one of the

8 The instantaneous decrease shall be 39% (+ symmetric adjustment) for Type 1 Eq-
uities and 49% (+ symmetric adjustment) for Type 2 Equities.



2 Private Capital in the Solvency II Framework 15

Equity
Type 1 Equities Type 2 Equities

Public
Equity

(listed in
OECD

or EEA)

Alter-
native
Invest-
ment
Funds

Public
Equity

(listed in
non-

OECD
or non-
EEA)

non-
listed
Equity

Commo-
dities

other
alter-
native
Assets

all
residual
Assets

Tab. 2: Asset classification in the equity sub-module.

general provisions for the standard formula (see Article 84 of Commission
Delegated Regulation (EU) 2015/35).

The most important insight with respect to private capital funds is their
explicit subsumption under Type 1 Equities if one of the - non-restrictive
- conditions of Article 168 (6) of Delegated Regulation (EU) 2015/35 is
met. This classification comes with the advantage of applying the more
pleasant instantaneous decreases factor of 39%. However, in some cases,
the subsumption under Type II Equities (with its instantaneous decreases
factor of 49%) may be more favorable for the insurer as diversification effects
between Type I and II Equities are considered in the standard formula (via
a Type I & II Equity correlation matrix).

2.2.3 Internal Model

Instead of insisting on the obligatory implementation of the standard for-
mula, the regulator grants insurers the option to use their own full or partial
internal models to calculate the SCR. Whereby, partial internal models can
cover one or more risk modules, or sub-modules, of the Basic Solvency Capi-
tal Requirement. Moreover, the directives are quite generous with regard to
the calibration of partial models:

“Insurance and reinsurance undertakings may use a different time
period or risk measure than that set out in Article 101(3) for
internal modeling purposes as long as the outputs of the inter-
nal model can be used by those undertakings to calculate the
Solvency Capital Requirement in a manner that provides policy
holders and beneficiaries with a level of protection equivalent to
that set out in Article 101.” (see Article 122 (1) of Directive
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2009/138/EC).

Clearly, determining an equivalent level of protection with some degree of
certainty may be a highly dodgy endeavor. It remains to be seen, what legal
opinion about this specific issue will prevail in the future.

3 Private and Public Data

Before preparing a Solvency II risk model, a survey of insurers’ financial
asset allocations should shed light on some general features and challenges
disclosed in insurance companies’ balance sheets. The GSAM Insurance
Survey (from April 2016)9 reveals, that Chief Investment/Financial Officers
of responding insurers have the highest return expectations for private equity
in 2016 and therefore many CI/FOs plan to increase investments to private
equity in the next 12 months. To be more precise 26% of respondents plan to
increase, 26% plan to maintain, 3% plan to decrease, and 44% do not invest
at all into private equity. Thus, private equity/capital expansion is certainly
manageable, since insurers’ allocation to alternative investments is generally
low. The National Association of Insurance Commissioners’ Capital Market
Special Report on the subject “U.S. Insurer Exposure to Schedule BA (Other
Long-Term Invested Assets): Focus on Private Equity, Hedge Funds and Real
Estate” gives an answer to the question of how much capital the average (US)
insurer allocates to private capital:

“Insurer exposure to unaffiliated investments that comprised PE
[Private Equity], HFs [Hedge Funds] and RE [Real Estate] were
$70 billion, $16 billion and $17 billion, respectively, at year-end
2014 (totaling $103 billion, or 1.8% of total cash and invested
assets).”10

A look into Allianz Group’s annual report for the financial year 2015 reveals
investments to unlisted, i.e. private, investment funds of 9.2 billion Euro and
an open commitment of 5.46 billion Euro, whereas total assets are 849 billion
Euro and cash and cash equivalents totaling to 14.842 billion Euro11. The
great majority of Allianz Group’s investment assets are currently government

9 See GSAM Insurance Survey (April 2016) (URL:https://www.gsam.com/content/dam/
gsam/direct-links/us/en/institutions/2016-gsam-insurance-survey.pdf?sa=n&rd=n)

10 See National Association of Insurance Commissioners’ “Capital Market Special
Report” from 4. March 2016 (URL: http://www.naic.org/capital_markets_archive/
160304.htm).

11 See (english) Annual Report 2015 - Allianz Group, pages 135 and 219. (URL:
https://www.allianz.com/en/investor_relations/results-reports/annual-reports)
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and corporate bonds. All in all, PCFs are yet appreciated with a minority
status within insurance undertakings, by now; but the importance appears
to be rising.

3.1 Preqin Cash Flow Data on Fund Level

We use Preqin (US-Dollar cash flow) data on fund level as of October 2015
for all subsequent PCF analysis, which contain the following information
about private capital funds:

• Fund ID

• Firm ID

• Vintage

• Category Type (i.e. investment target/style)

• Fund Status (i.e. still active or yet liquidated)

• Fund Size (in fund currency and in USD)

• Fund Focus (i.e. geographic/regional focus with levels: US, Europe,
and Rest of World)

• Transaction Date

• Transaction Category (with levels: Call, Distribution, and [Net Asset]
Value)

• Transaction Amount

• Cumulative Contribution

• Cumulative Distribution

• Net Cash Flow

• Fund Name

• Firm Name
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Data Cleaning and Editing

In the first data processing step, we aim to detect and remove funds with
large “data gaps”, i.e. long time periods without data updates. Especially
with old vintages, there are quite some funds without NAV data for several
years. These funds are obviously not suitable for further analysis, as ideally
NAVs should be reported continuously in a quarterly interval throughout a
fund’s lifetime. Moreover, we extract the first reported transaction dates (of
cash flow and NAV) for each fund and check, if first reported NAV date, first
reported cash flow date, and reported vintage year exhibit irregularities or in-
consistencies. Another task is the determination of each fund’s “death date”,
provided that the fund in question is “economically dead”. The definition of
living vs. dead funds is anything but straightforward and it is considerable
that this distinction is only possible through the application of subjective -
more or less restrictive - decision rules. An obvious candidate for a fund’s
death date is the point in time where the NAV (and the callable open com-
mitment) falls below a specified threshold. But unfortunately, some dubious
(or even flawed) entries in the data set can be observed, which prevent easy
solutions for the death date problem from delivering the desired “correct”
classification in all cases.

After cleaning the data set, we map the Preqin Category Types to the
Asset Metrix Type (AMT) taxonomy, which aggregates Preqin’s 28 levels to
10 levels of AMTs12.

Summary of Data Set after Cleaning and Editing

The final data set used for further analysis and modeling contains 2,977 dif-
ferent funds. Thereof 419 funds may be regarded as economically dead13,
although just 398 funds are classified as officially “liquidated” in the Fund
Status information. The geographical decomposition of funds, indicated by
the Fund Focus variable, overweights US-based funds with 2,270 entries; by
contrast, Europe exhibits 424 and Rest of World just 283 funds. The dis-
tribution of vintages clearly reflects the growing number of private capital
funds over time, as the data set contains 41 funds with vintages between
1984 and 1989, 429 funds with vintages in the 1990’s, 1411 funds with vin-
tages in the 2000’s, and 896 funds with vintages between 2010 and 2015.

12 AMT abbreviations: BO = Buy Out, VC = Venture Capital, RE = Real Estate,
FOF = Fund of Funds, DD = Distressed Debt, NatRes = Natural Resources, MEZZ =
Mezzanine, SEC = Secondaries, Infra = Infrastructure.

13 Decision rule, e.g. NAV/Commitment-ratio below 5% threshold for funds with age >
10 year.
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The predominant Asset Metrix Type levels are by far Buy Out and Venture
Capital, as this two types represent more than half of all funds in the data
set: Buy Out (994 funds), Venture Capital (723), Real Estate (374), Fund
of Funds (337), Distressed Debt (141), Natural Resources (100), Mezzanine
(99), Secondaries (80), Infrastructure (70), and Other (59). Table 3 ulti-
mately provides an aggregated overview of the overall distribution of private
capital funds in the data set.

3.2 Public Market Data

The public market data required for eventual PCF risk models are sum-
marized in the table below. Alas, no suitable data for commodities nor
infrastructure investments could be detected.

Asset Class Region Factor Data Currency Source

Public Equity

World Return [FF93]: Rm-Rf USD mba.tuck.dartmouth.edu/
pages/faculty/ken.french/
data_library.html

US Return NASDAQ 100 USD www.quandl.com/data/
BCB/7847

US Return [PS03]: Traded 10-1
liquidity portfolio

USD faculty.chicagobooth.edu/
lubos.pastor/research/

Fixed Income

US Spread OA High-Yield
Spreads (corporate)

USD www.quandl.com/data/
ML/HYOAS

US Yield Treasury Yield Curve
Rate (one-year)

USD www.quandl.com/data/
USTREASURY/YIELD

World Return Vanguard Total Bond
Market Index

USD www.quandl.com/data/
YAHOO/FUND_VBMFX

Real Estate US Return Real Estate Price
Index (commercial)

USD www.quandl.com/data/
FED/FL075035503_Q

Commodities na na na na na
Infrastructure na na na na na

Generally, public market data availability (especially for high-yield spreads
and real estate indices) is considerably better for the United States than for
Europe or Rest of World. Therefore, all analysis (throughout this paper)
are conducted from a US-Dollar PCF investor’s perspective. This also al-
lows us to ignore tedious currency issues since the Preqin data set does not
contain information on the transaction currency of individual PCF under-
lying investments anyway. Guessing the “fund currency”, which has to be a
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Vintage Total
by AMT by AMT & Region

BO VC all other BO.US BO.EU VC.US VC.EU

1984 1 1 0 0 1 0 0 0
1985 7 2 5 0 2 0 4 1
1986 9 1 6 2 1 0 6 0
1987 8 5 2 1 5 0 2 0
1988 10 5 4 1 5 0 4 0
1989 6 2 4 0 2 0 4 0
1990 14 4 8 2 3 1 7 1
1991 7 1 4 2 1 0 3 0
1992 23 9 9 5 9 0 8 1
1993 22 10 9 3 8 2 8 0
1994 35 18 11 6 16 2 11 0
1995 34 14 15 5 11 2 14 1
1996 49 21 16 12 18 1 15 1
1997 66 26 23 17 20 4 20 2
1998 92 43 33 16 32 11 31 0
1999 87 31 40 16 25 5 38 1
2000 145 43 85 17 38 5 75 4
2001 102 25 46 31 19 5 41 5
2002 75 24 28 23 19 5 23 4
2003 61 18 19 24 15 3 17 1
2004 93 28 30 35 24 3 29 0
2005 157 59 34 64 38 13 28 4
2006 209 75 42 92 55 16 41 0
2007 238 82 56 100 46 20 43 4
2008 223 77 40 106 45 21 33 0
2009 108 35 16 57 18 12 13 2
2010 155 46 20 89 30 7 20 0
2011 218 61 25 132 25 17 19 3
2012 201 64 25 112 43 12 19 4
2013 246 73 28 145 42 13 23 4
2014 222 72 32 118 46 17 24 5
2015 54 19 8 27 9 6 4 3

Tab. 3: Summary of final private capital fund data set
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mixture of underlying fund investment currencies, on the basis of Preqin’s
Fund Focus information may do more harm than, for the sake of simplicity,
assuming US-Dollar as the worldwide basis currency14. In the Solvency II
framework, there is, fortunately, an appropriate currency risk sub-module
considering foreign exchange on both the asset and the liability side of an in-
surance company’s balance sheet, which confirms our approach of neglecting
currency effects. So all subsequent analysis/models exhibit a global orien-
tation towards a US-Dollar investor, although Solvency II is an exclusive
project of the European Union. As 2,270 out of 2,977 funds in the Preqin
data set display a US region label, the US-Dollar focus still may be judicious
for public market data.

4 Replicating the Portfolio Risk

Risk models for private capital funds have to capture all asset class pecu-
liarities to guarantee sound risk estimates. Consequently, standard textbook
solutions for public equity/debt are not suitable without major adjustments.
To get a good first impression of the challenges associated with the risk mea-
surement of private capital funds, industry associations (may) offer valuable
insights in their publications. The European Private Equity and Venture
Capital Association (EVCA) defines in its “Risk Measurement Guidelines”
from January 201315 six criteria for a risk model for portfolios of private
equity funds. According to that, the model should be (1) complete, (2) un-
biased, (3) monotonic, (4) observable, (5) reconcilable, and (6) interrelated
to ensure a reasonable assessment of the degree of uncertainty inherent in fu-
ture cash flows and returns (of private equity). Further, four distinct types
of risks are specified in these guidelines; correspondingly limited partners
have to consider (a) funding, (b) liquidity, (c) market and (d) capital risk
for their private capital investments. With this in mind, a scientific risk
engineer needs to select the appropriate methodology in the planning stage
of her risk model, which is best aligned with the relevant points mentioned
above. In the Solvency II context, e.g. funding and illiquidity risk may not
be that important, as big insurance undertakings ideally have more than
sufficient liquidity to meet all capital calls and, secondly, have long enough
investment horizons (and relatively small private capital exposure) to avoid
forced secondary sales of private capital interests.

14 If we assume E (4FX.rate) = 0 for each analysis date of e.g. regression models, a
potential FX-bias averages out over sufficiently long analysis horizons.

15 URL: http://www.investeurope.eu/media/10083/evca-Risk-Measurement-Guidelines-
January-2013.pdf
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Slightly distinct conceptions of private equity risk exist in the academic
literature. The main focus there is clearly on the evaluation of the attractive
of the risk/return profiles of Buy Out or Venture Capital fund investments
to finally appraise the entire asset class. This results in most cases in an
alpha/beta-decomposition of private equity returns on the basis of cash flow
data. Therefore, customized generalized method of moments (GMM) or
maximum likelihood estimation (MLE) methods are developed (and applied)
in these papers, as the classical time-series OLS regression approach used in
public equity is not feasible (see e.g. [DLP12] for a GMM- and [Coc05] for
a MLE example).

In the Solvency II context, the focus is on market risk, which is mea-
sured by means of 99.5% Value-at-Risks (VaRs) with a one-year horizon.
In order to determine VaRs with our own unique approaches, we define ap-
propriate performance and risk measures in Section 4.1. In Section 4.2 a
feasible historical PCF simulation method is introduced and critically ana-
lyzed. Section 4.3 develops regression-based linear multi-factor models on
portfolio and single fund level; many challenges and remedies have to be dis-
cussed throughout the paragraph. Ultimately, the single fund level models
of Section 4.3.2 serve as fundamental building blocks for the construction of
Monte Carlo simulation prototypes in Section 4.4.

4.1 Defining an Appropriate Risk Variable and Measure

The first step in the risk modeling of private capital funds is the determina-
tion of the dependent variable whose risk should be assessed. This involves
answering the following three questions:

1. Question: Which horizon?

2. Question: Which performance measure?

3. Question: Which risk measure?

In the private capital (fund) context, this task is not that unsophisticated
as it might seem. Particularly, certain (private capital specific) assumptions
need to be established in advance, in order to attain suitable conclusions.
The most substantial one affects the notion of reported net asset values. Here
we suppose that private capital investors - and especially insurers - use these
NAVs for fair-value accounting purposes. This view implicitly vindicates a
market-value like treatment of NAVs (in e.g. return calculation formulas).
As mentioned in Section 2.1.2 this perception is controversial but reported
net asset values might nevertheless be the most expedient estimator of the
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present value of a private capital fund’s future cash flows. Clearly, this
estimator exhibits large-scale staleness16 as general partners update NAVs
only on a quarterly basis.

Another field of conjectures is the re-investment and finance assumptions
inherent in various performance calculation approaches, which become essen-
tial and important particularly in multi-year horizons. These assumptions
simply attempt to incorporate dynamic elements into static performance
measurement schemes. Apparently, such easy solutions are limited in their
ability to model more complex dynamics. However, if the (risk or perfor-
mance measurement) horizon is short enough, active re-investment/finance
assumptions become negligible.

Horizon

As outlined in Section 2.2.1, the Solvency Capital Requirement “shall corre-
spond to the Value-at-Risk of the basic own funds of an insurance or rein-
surance undertaking subject to a confidence level of 99,5% over a one-year
period” (see Article 101 (3) of Directive 2009/138/EC). So we outright con-
stitute a risk measurement horizon of one year or respectively four quarters,
i.e. h = 4q, for the remainder of this paper17.

Performance Measure

In this section, we establish a link between the two most commonly used
performance measures in the private capital universe; these are the Total
Value to Paid In ratio (TVPI) and the Internal Rate of Return (IRR). Hence,
the concept of “NAV-Return” (RNAV ) is introduced and the adaption of
all performance measures to a one-year horizon is outlined concisely. In
Appendix A additional PCF performance measures are discussed.

At first, we define the vectors of contribution cash flows

C =
⇥

Ct0 , Ct1 , Ct2 , ..., Ctn , ..., CtN�1 , CT

⇤

16 The stale valuation problem in the private capital context is addressed ex-
plicitly by Susan E. Woodward from Sand Hill Econometrics in [Woo09] (URL:
http://www.sandhillecon.com/pdf/MeasuringRiskForVentureAndBuyouts.pdf).

17 In general, there are several considerations regarding the choice of suitable Value at
Risk parameters (horizon and confidence level), which are summarized in [MFE05] on
page 42. With respect to horizon, they remark that “the risk-management horizon 4
should reflect the time period over which a financial institution is committed to hold its
portfolio.“
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and distribution cash flows

D =
⇥

Dt0 , Dt1 , Dt2 , ..., Dtn , ..., DtN�1 , DT

⇤

.

Thus all cash flows occur at discrete points in time and

t 2 [t0, t1, t2, . . . , tn, . . . , tN�1, T ]

can be interpreted as fund age, whereby variable N represents the amount
of equidistant periods between fund start at t0 and fund end at tN = T .
Moreover, the fund’s net asset value can be assigned for each age t. To ease
the time notation we allow to define dates with e.g. tn � 4q + 1d, which
means the date four quarters before tn plus one day.

Total Value to Paid In Ratio (TVPI) The TVPI at time tn is calculated as
the ratio between the sum of current net asset value and cumulative distribu-
tions in the numerator and the cumulative contributions in the denominator:

TV PItn =
NAVtn + CDtn

CCtn

= RV PItn +DPItn =
NAVtn

CCtn

+
CDtn

CCtn

(1)

Obviously, the TVPI (formula) can also be split into its two components
Residual Value to Paid In (RVPI) and Distributions to Paid In (DPI). Cumu-
lative quantities are computed straightforward as the sum of all distribution-
or respectively contribution- cash flows up to time tn, i.e. CDtn =

Pn
i=0Dti

or respectively CCtn =
Pn

i=0Cti . Next, a decomposition of the TVPI for-
mula may offer some insights with respect to the ratio’s interpretation:

TV PItn =
NAVtn +

Pn
i=0Dti

Pn
i=0Cti

=

Pn
i=0Cti +

Pn
i=1 (4NAVti,1 +4NCFti,1)
Pn

i=0Cti

= 1 +

Pn�1
i=1 (4NAVti,1 +4NCFti,1) + (4NAVtn,1 +4NCFtn,1)

Pn�1
i=0 Cti + Ctn

(2)

where the change of net asset value 4NAV and the change of net cash flow
4NCF are calculated as

4NAVtn,x = NAVtn �NAVtn�x
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4NCFtn,x =
n
X

i=n�x

(Dti � Cti)

with x being e.g. the performance/risk measurement horizon.
In the last expression of Eq. (2) only the new period “value-creation term”

(4NAVtn,1 +4NCFtn,1) and the new contribution term Ctn for the period
between tn�1 and tn are unknown a priori at time tn�1. This illustrates
the fact, that the TVPI ratio at time tn reflects the comprehensive fund
performance since inception and thus incorporates much old, i.e. already
known at time tn�1, information. TVPIs are usually calculated as well for
single private capital funds as for portfolios of private capital funds, but in
both cases rather for benchmarking than for risk measurement/management
purposes.

Internal Rate of Return (IRR) The second standard metric to evaluate pri-
vate capital fund performance is the IRR, initially used in capital budgeting
to measure and compare the profitability of investments. Computationally
this concept is more complicated, as an internal rate of return is a discount
rate that makes the net present value (NPV) of all net cash flows from a par-
ticular fund (or a portfolio of funds) equal to zero. Therefore IRR calculation
is equivalent to the following root finding problem:

NPVtN :=

N
X

i=0

Dti � Cti

(1 + IRRtN )
ti

!
= 0 (3)

Generally, numerical methods have to be applied to find solutions to Eq. (3).
However, there are situations where no IRR at all or, vice versa, multiple
IRRs fulfill Eq. (3). Furthermore, as the summation in Eq. (3) involves all N
time-steps, the conclusive and terminal IRR can only be determined ex-post.
And there is yet another critique or drawback of the internal rate of return
since the IRR’s economical interpretation is not always straightforward -
especially in the context of mutually exclusive projects - and may cause
confusing and fallacious conclusions on a portfolio level.

NAV Return Both performance measures, introduced so far, describe the
overall or cumulative performance from fund inception t0 to date tn or tN .
Though, the risk measurement - and therefore the performance measurement
- horizon was set to one year (or respectively four quarters) beforehand. The
derivation of intermediate performance metrics requires the incorporation of
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the net asset values at period, i.e. horizon, start and end. One possible,
obvious formula for a one-year “NAV Return” from time tn�4q to time tn is:

1 +R

NAV
tn =

NAVtn +
Pn

i=n�4q+1d(Dti � Cti)

NAVtn�4q

=
NAVtn +4NCFtn,4q

NAVtn �4NAVtn,4q

=
NAVtn�4q + (4NAVtn,4q +4NCFtn,4q)

NAVtn�4q

(4)

In the last expression of Eq. (4) only the value-creation term for the new
year is unknown a priori. This RNAV formula has the (remarkable) property
that it can generate returns of less than -100% in situations with e.g. large
contributions in the respective period. On the other hand, RNAV

tn can get
very big in cases with large distributions in a given period. Despite these
peculiarities, this specific NAV return construct18 is the most natural PCF
performance measure (for intermediate, one-year horizons) in the Solvency
II context, as it exhibits the right denominator and the most reasonable
numerator for our risk management purposes (see Eq. (6)).

All approaches mentioned above (and in Appendix A) can be extended
straightforward onto (total) portfolio level, where other non-PCF “sources of
cash flows” may be incorporated to calculate portfolio returns. However, the
multiplicative conversion between different period lengths

(1 +Ryearly) 6= (1 +Rquarter1)·(1 +Rquarter2)·(1 +Rquarter3)·(1 +Rquarter4)

generally does not hold for performance measures like R

NAV .

Risk Measure

For a third and final time, we cite that the Solvency Capital Requirement
“shall correspond to the Value-at-Risk of the basic own funds of an insurance
or reinsurance undertaking subject to a confidence level of 99,5% over a one-
year period” (see Article 101 (3) of Directive 2009/138/EC).

18 In Section “Other Approaches to Estimate Risk and Abnormal Return - Using Inter-
mediate NAVs” [Pha10] uses the equivalent of Eq. (4) to derive quarterly excess returns
for his NAV-based regression approach.
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Value at Risk Value at Risk (VaR) is the most common statistical approach
to quantify the current downside risk of a financial position or portfolio (as
a capital adequacy requirement). [Jor06] defines Value at Risk on page 106
as “the worst loss over a target horizon such that there is a low, pre-specified
probability that the actual loss will be larger.” To be more precise, one
can mathematically define VaR at confidence level ↵ 2 [0, 1] (in our case
↵ = 0.995) for a given horizon h as

V aR↵ (Lh) = inf {l 2 R : P (Lh > l)  1� ↵} (5)

or alternatively, using the generalized inverse distribution function F

�1
Lh

(↵),
as

V aR↵ (Lh) = F

�1
Lh

(↵) := inf {l 2 R : FLh
(l) � ↵}

with FLh
(l) = P (FLh

 l) (see [MFE05], p. 38). Obviously, our relevant
loss distribution has to be derived with the return formulas introduced in
the previous section. A loss for a given horizon h is simply

Lh := Vtn�h � Vtn = �Vtn�h ·Rh

the difference of the fund/portfolio values V at time tn and tn+h or - more
conveniently for our case - the negative of the product of Vtn and the fund
(or portfolio) return over the predefined horizon19. Here Vtn+h

and Rh are
unknown quantities at time tn. Thus they are perceived as random variables
in the VaR framework, which makes Lh a random variable, too. The de-
termination or derivation of Lh’s cumulative distribution function (c.d.f.) is
eventually the core exercise in VaR calculation (or estimation).

In the PCF context, we derive a “private capital loss function” by setting
Rh = R

NAV and V = NAV

Lh = �NAVtn�h ·RNAV = � (NAVtn +4NCFtn,h �NAVtn�h) (6)

Otherwise, we can explicitly modify the VaR formula for our specific risk
measure variable, which is one-year R

NAV , and the prescribed ↵ = 99.5%
and h = 4q parameters. This yields a newly established Return at Risk
(RaR) measure

RaRtn = inf
�

r 2 R : P
�

R

NAV
tn  r

�

� 0.5%
 

(7)
19 According to this definition, losses are positive and gains are negative.
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which can be used to derive the VaR in a subsequent step

V aR = �RaRtn · Vtn�h

= �F

�1
RNAV

tn

(0.5%) · Vtn�h

= � inf
�

r 2 R : P
�

R

NAV
tn  r

�

� 0.5%
 

· Vtn�h

where F

�1
RNAV

tn

is the generalized inverse distribution function. Note that Eq.
(7) calculates the Return at Risk for time tn�4q, i.e. four quarters before
date tn, or respectively makes a “quantile forecast” for date tn, which is due
to the “backward” definition of RNAV

tn in Eq. (4). Furthermore the one-year
horizon (h = 4q) is already directly incorporated in Eq. (4) and therefore
needs no extra consideration in Eq. (7).

Parametric vs. Non-parametric VaR Estimation There are two possible
ways to estimate VaRs or - more generally - quantiles of distributions. In
a parametric approach the distribution of the random variable of interest,
i.e. R

NAV in our case, is assumed to belong to a parametric family. Thus
once the most appropriate family is identified, the parameters associated
with that distribution have to be estimated (incorporating methods like e.g.
method of moments, maximum likelihood, etc.).

Conversely, a non-parametric approach is more general as it does not
make any assumption about the shape of the random variable’s distribu-
tion. Rather the respective historical/empirical distribution is used directly
to estimate quantile or VaR figures or for more complex cases simulation ap-
proaches are applied to generate an empirical cumulative distribution func-
tion. Anyway, both approaches implicitly follow the notion that the past is
predictive about the future and, as stated in [Jor06] on page 105, “that the
current portfolio is “frozen” over the horizon, like all traditional risk mea-
sures, and combines current positions with the uncertainty in the risk factors
at the end of the horizon.”

Non-subadditivity Property of VaR Despite the high popularity of VaR
among risk managers and regulators, there are some fundamental critiques
concerning the approach. The most severe (critique) is the fact that VaR
is not a coherent risk measure in the sense of [ADEH99]. In their seminal
paper, they define a coherent risk measure as a function that satisfies the
four axiomatic properties of (a) translational invariance , (b) sub-additivity,
(c) positive homogeneity, and (d) monotonicity. Unfortunately, VaR does
(in general) not meet the desirable feature of sub-additivity, which aims at
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the risk-reducing nature of diversification, i.e. the idea that the aggregation
of financial positions to a portfolio does not increase risk or as outlined in
[ADEH99] that “a merger does not create extra risk”.

Conditional Value at Risk Another critique is that VaR does not say any-
thing about the shape of losses in excess of the “VaR threshold”; albeit these
regions are naturally most critical in the risk management context. So in or-
der to shed light on the distributional tail area beyond the VaR, the concept
of Conditional Value at Risk20 (CVaR) is introduced

CV aR↵ (Lh) = E (Lh|Lh � V aR↵ (Lh)) =
1

1� ↵

ˆ 1

↵
V aRu (Lh) du

which is the expected value of losses that exceed VaR or the average VaR of
all levels u 2 [↵, 1] (see [MFE05], p. 44).

Conveniently CVaR resolves the non-subadditivity critique of VaR, too,
as it satisfies all four coherence axioms. So reporting CVaR in addition
to VaR seems generally a good idea to convey a more comprehensive risk
assessment.

Value at Risk Decomposition Further portfolio managers may be espe-
cially interested in the (value at) risk contribution of particular portfolio
components to the total portfolio (value at) risk. Therefore [Jor06] presents
in Chapter 7.2 three Value at Risk tools:

• Marginal VaR: “the partial (or linear) derivative with respect to the
component position” (beta factors from risk-factor regression),

• Incremental VaR: “evaluate the total impact of a proposed trade on
the portfolio”, and

• Component VaR: “additive risk decomposition of portfolio that recog-
nizes the power of diversification”.

4.2 Historical Portfolio Simulation

In this section, we describe a way to simulate the return distribution for a pre-
specified portfolio consisting of several private capital funds and optionally

20 Also known as Expected Shortfall, Expected Tail Loss, Tail Conditional Expectation,
Tail Value at Risk or Average Value at Risk. See e.g. [ADEH99], [FW15], or [MFE05]
Chapter 2.2 and 6.1 for a more detailed consideration of (coherent) risk measures.
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public (equity, fixed income, ...) indices directly from historical data21. Much
effort has to be expended to demonstrate a variety of difficulties associated
with historical simulations in the PCF context, which turn out to be virtually
intractable. Nevertheless, this section features certainly vital lessons learned
for further PCF risk-modeling approaches.

The most basic one-year portfolio return formula (for a mixed portfolio
of K components) incorporates the R

NAV concept for private capital funds
and standard percentage changes for the public indices

RPF = w

T
R =

K
X

k=1

wk ·Rk (8)

where the (return-period start-NAV-scaled) weight of the k-th position is
given by

wk,nav =
NAVk,tn�4q

PK
j=1NAVj,tn�4q

(9)

and the period tn�4q, tn return Rk of the k-th element is calculated with Eq.
(4) for private capital funds and with

Rk =
NAVk,tn

NAVk,tn�4q

� 1

for public (performance) indices. In the case of publicly traded assets the
NAV equals simply public market values. This method for calculating port-
folio returns is equal to

1 +RPF =

PK
k=1 (NAVk,tn +4NCFk,tn,4q)

PK
k=1NAVk,tn�4q

(10)

calculating the portfolio return directly with aggregated quantities in Eq.
(4).

Historical Simulation Idea Estimating the return distribution of a given
portfolio via a historical simulation method corresponds basically to ran-
domly sample many returns out of the pool of all (historically) feasible re-
turns of similar portfolios, which should be uniformly distributed over time.

21 See [Jor06] Chapter 10.4 “Historical Simulation Method”, [MFE05] Chapter 2.3.2 “His-
torical Simulation”, [Ale08] Chapter VI.3 “Historical Simulation”, or [Dow02] Chapter 4
“Non-parametric VaR and ETL” for textbook literature on (public market) historical Value
at Risk simulation methods.
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4.2.1 Portfolio Similarity and Optimal Scaling

However, it is quite challenging, or virtually intractable, to construct or find
just one similar “historically feasible” portfolio consisting of private capital
funds, regardless of how similarity is defined in the specific case. Someone
could e.g. demand matching private capital fund attributes with respect to

• Fund Age,

• Fund Type,

• Fund Region,

• Current NAV (in % of Commitment),

• Current Cumulative Distributions (in % of Commitment), and

• Current Cumulative Contributions (in % of Commitment)

to consider two funds (as) similar. This reasonable, six-dimensional criterion
leads directly to a paragon for a problem called the curse of dimensionality.
Our data set, summarized in Table 3, is by far too meager to make this
similar portfolio sampling approach viable.

So, as an expedient, we reduce the criterion’s dimension to one and de-
mand only Fund Age to be equal; i.e. just the age structure of the actual
and the sampled PCF portfolio have to be (approximately) the same. But
as a consequence of this rather loose similarity condition, another problem
regarding the weights in the portfolio return formula arises. Since the return
period start NAVs of our sampled funds may be totally different than the
actual funds’ NAVs, the portfolio weights (calculated with Eq. (9)) of the
actual and the historically sampled funds may deviate substantially and in
a random manner.

Clearly, the “right”, i.e. actual, weights can be computed with Eq. (9)
using actual portfolio NAVs. Likewise, the historical NAV return can be cal-
culated easily. Though combining these two quantities may yield inconsistent
and unreasonable results as

RPF.sim := (wactual)
T
Rsampled 6= (wsampled)

T
Rsampled

Particularly, situations with a relatively small, sampled return period start
NAV seem problematic as a smaller denominator in Eq. (4) makes the NAV
Return more volatile. In a realistic portfolio, volatile NAV Returns are
weighted with small weights per definition of Eq. (9); but if we combine
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actual weights with sampled returns this mechanism is not in charge. As a
result, simulated PCF portfolio returns are not/hardly “historically feasible”,
if we use actual weights.

A natural, but precarious workaround is modification or scaling of weights;
e.g. commitment scaling for PCFs

wk,com =
Commitmentk,tn�4q

PK
j=1Commitmentj,tn�4q

(11)

albeit this method is only directly applicable, if there are only PCFs in the
given portfolio; the integration of public assets can only be achieved in a
subsequent step

RPF = xprivate ·Rprivate + xpublic ·Rpublic

= xprivate ·
�

w

T
comR

�

+ xpublic ·
�

w

T
navR

�

(12)

whereby the commitment-weighted private (capital funds) portfolio return
Rprivate can be equivalently calculated via a scaled version of Eq. (10)

1 +Rprivate =

PK
k=1 [sk · (NAVk,tn +4NCFk,tn,4q)]

PK
k=1 (sk ·NAVk,tn�4q)

(13)

with commitment-scaling parameter

sk =
Commitmentk,actual
Commitmentk,sampled

(14)

In summary, we recognize, that the exact replication of a given actual port-
folio is not viable with historical simulation methods. Nevertheless, the
approximative, i.e. un-replicative, simulation of historically feasible portfo-
lios (via commitment-scaling) might offer valuable insights; even if, historical
simulations are usually unconditional as they do not incorporate conditional
(e.g. public market) information in the base case.

4.2.2 Simulation Algorithm

If we accept that a historical simulation technique is merely capable of es-
timating approximative and unconditional distributions, then the following
procedure can be applied to generate a distribution for Rprivate, which is the
R

NAV of a portfolio consisting of K private capital funds:

Iterate N -times
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1. Sample Analysis Date, i.e. period start date tn�4q

2. Sample K different Fund IDs which satisfy the
Fund Age similarity criterion22

3. Determine weights by Eq. (11) or scaling param-
eter by Eq. (14)
4. Calculate Rprivate via Eq. (12) or Eq. (13)

to generate N historically feasible PCF portfolio returns.

This algorithm yields a vector RHist.Sim.
private = [R1, R2, . . . , RN ] of N simulated

PCF portfolio returns, which constitutes the empirical cumulative distribu-
tion function for a given simulation run. Given the fund data from the Preqin
set, we allow the period start date to be in the interval

tn � 4q 2 [1995Q1, 1995Q2, . . . , 2014Q3]

and the period end date in

tn 2 [1996Q1, 1996Q2, . . . , 2015Q3]

Further, we assume the Analysis Dates to be uniformly distributed in our
sampling scheme, which makes our historical simulation equal-analysis-date-
weighted and therefore unconditional23. Our similarity criterion demands
exact matching of Fund Ages (in years) for ages below 10 and for ages of
10 and above we just demand Fund Ages to exceed that threshold. The
determination and calculation of weights, scaling parameters and returns is
then straightforward.

In a subsequent step, we might be interested in the determination of
excess returns, i.e. the difference between a given return and a benchmark
return, often used in econometric models. The excess NAV return (exceeding
one-year risk-free rate r

riskfree.1year) on portfolio level can be estimated in
our case by two methods

w

T
com

⇣

R� r

riskfree.1year
currency

⌘

t Rprivate � r

riskfree.1year
average

22 Note, that the “pool sizes of similar funds” are quite heterogenous for different analysis
dates and for old fund ages we may sample dead funds!

23 Our procedure allows “overlapping periods”, as all 4 quarters may be sampled in one
simulation run. In public market applications, this specification would cause an autocor-
relation problem, which leads to an underestimation of risk. However, due to the high
idiosyncratic risk in our PCF simulation context, this feature is hardly detectable/apparent
in our setting.
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Type Focus Age.year Age.week CC CD NAV Comm
BO US 1 23 1.4 0 1 10
FOF ROW 2 75 10 2 8 20

NatRes EU 3 129 5.5 5 7 5
VC US 4 181 14.7 3 14 15
BO ROW 5 233 12 13 2 12.5
RE EU 6 285 8 2 5 15
DD US 7 337 1 0 1 10
Infra ROW 8 389 9.5 3 11 10
VC EU 9 441 10.5 9 4 10

MEZZ US 10 493 10 4 5 10

Tab. 4: Ten Fund Test Portfolio

namely, on the one hand the commitment-weighted sum of excess returns
on PCF level or on the other hand the difference between the PCF portfolio
return and an average (currency weighted) one-year (government bond) yield
curve rate. For the rest of the paper, we generally abbreviate excess NAV
returns with xR

NAV in the text, but denote it with Y in mathematical
(regression/simulation linked) formulas, to emphasize the dependent variable
character in the regression analysis context:

R

NAV � r

riskfree := xR

NAV = Y (15)

4.2.3 Ten Fund Test Portfolio

In this section, we apply the historical simulation procedure described above
to a test portfolio of ten PCFs (the so-called Ten Fund Test Portfolio, ab-
breviated TFTPF), which composition is outlined in Table 4. We have to
sample 10,000 + X times from the Preqin data set to obtain 10,000 valid
NAV returns of PCF portfolios with a similar age structure like the ten fund
test portfolio24. So not every draw, i.e. simulation iteration, results in a
(valid) NAV return figure; this is due to situations, when we sample one or
more “dead” Fund IDs. If we simply weight dead funds with weight zero,
then again portfolio similarity is not fulfilled. Hence the X void draws are a
necessary evil with our straightforward sampling algorithm.

24 A conservative estimate for the total number of (distinct) historical feasible PCF
returns obtainable for the ten fund test portfolio with our historical simulation approach
might be about 250 million (78 analysis dates x 10! possible portfolios for each analysis
date).
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After 18,234 seconds or a little bit more than 5 hours, the code, imple-
mented in R, returned a vector with 10,000 NAV returns. The consequential
xR

NAV distribution is visualized in Figure 1 and summarized in the following
table:

mean median st.dev. skew kurt min max
0.134 0.107 0.322 - - -0.599 4.694
Q0.1% Q0.5% Q1% Q2% Q5% Q10% Q25%
-0.531 -0.419 -0.364 -0.310 -0.237 -0.158 0.001
Q75% Q90% Q95% Q98% Q99% Q99.5% Q99.9%
0.214 0.365 0.522 0.870 1.429 2.011 3.429

Briefly worded, xR

NAV ’s are positively skewed and leptokurtic. Mean
(13.4%), median (10.7%), standard deviation (32.2%), 25% quantile (0.1%),
and 75% quantile (21.4%) all lie within expectations and seem to confirm
private capital’s high-risk/high-return reputation. Naturally, the interesting
regions are the right and especially - for risk managers - the left tail of the
distribution. The rugs, i.e. the dark-green dashes, below the histogram
in Figure 1 display single observations and thus convey good “tail density
impressions”. The 99.5% Value at Risk of xRNAV ’s, which corresponds to
the 0.5% quantile in the above table, is �41.9% · (�

P

NAV ) and the 99.5%
Conditional VaR is �48.1% · (�

P

NAV ).
Figure 2 exposes an apparent time pattern in historically simulated PCF

portfolio returns. Neither the mean return nor the volatility seems to be
constant over time.

Skewed Generalized t Distribution Fitting [The98] introduced the Skewed
Generalized t Distribution (SGT) as a ”flexible distribution accommodating
the skewness and excess kurtosis often present in financial data”. This flexi-
bility manifest itself in the fact, that the SGT distribution can be converted
to various established distributions with appropriate parameterization. So
we fit a SGT distribution to the empirical xRNAV data from the historical
simulation example using maximum likelihood estimation (MLE), to exam-
ine, if the SGT distribution can cope with all important features of the
empirical distribution. MLE is probably the most applied method of esti-
mating the parameters of a pre-specified statistical model given sample data
(i.e. parametric inference). The general MLE procedure is

1. specifying the joint probability density function (p.d.f.) for all obser-
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Fig. 1: Historically simulated xR

NAV distribution of TFTPF

Fig. 2: Time evolution of historically simulated TFTPF returns
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vations. For i.i.d. samples the joint p.d.f. is

f (x |✓ ) = f (x1 |✓ )⇥ f (x1 |✓ )⇥ . . .⇥ f (xn |✓ )

2. defining the likelihood function L (by using the joint p.d.f., but consid-
ering the observation vector x to be a fixed parameter and the model
parameter vector ✓ as “flexible” variable)

L (✓;x) = f (x |✓ ) =
n
Y

i=1

f (xi |✓ )

3. taking the natural logarithm of the likelihood function (if convenient)

logL (✓;x) =

n
X

i=1

f (xi |✓ )

4. finding a value of ✓, that maximizes the (log-)likelihood function

n

✓̂mle

o

✓
⇢

argmax
✓2⇥

L (✓;x)

�

In our case, the (ML) estimation of the five SGT distribution parameters
µ,�,�, p, q is comfortably done in R using the sgt.mle() function from the
“sgt” package.

The result is visually apparent in Figure 3. Here we can see a good fit
in the distribution center, but obvious and serious left and right tail issues.
The red (simulated SGT) and green (empirical) rugs nicely indicate, there
is by far too much density in the left and too little density in the right
tail of the fitted SGT distribution. However, it is noteworthy, that per
definition of NAV Returns in Eq. (4) values below -1 are not problematic
per se. Nevertheless, we have to conclude, that, unfortunately, the SGT is
not “flexible” enough to satisfactorily approximate the ten fund test portfolio
returns. Hence even this advanced parametric method can not capture the
empirical distribution’s complexity.

4.3 Linear Multi-Factor Models

Section 4.2 describes a way to generate (historically feasible) PCF portfolio
returns. This section is now interested in developing models to explain these
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Fig. 3: Fitted skewed generalized t vs. empirical distribution of TFTPF

(and other PCF) returns via dimension reduction techniques25. This effort
comes with the benefit, that we make the unconditional input variable condi-
tional (some independent variables). More specifically, we seek models which
(linearly) decompose PCF returns into multiple systematic risk factors and
- very important in our case - residual idiosyncratic risk. Such multi-factor
models are categorized by [Con95] into three main types:

• Macroeconomic factor models, that use time-series of observable eco-
nomic variables like interest rates, inflation, GDP, unemployment rate.

• Fundamental factor models, that use the time-series of returns to mim-
icking portfolios targeting specific observable asset attributes like e.g.
(in public equity) book-to-market ratio, industry classification, or div-
idend yield.

• Statistical factor models, that treat the factors as unobservable or la-
tent variables which are derived via statistical techniques like principal
component analysis.

25 There is excessive textbook literature of vanilla factor models for (public) asset returns;
see e.g. [MFE05] Chapter 3.4 “Dimension Reduction Techniques”, [Tsa10] Chapter 9 “PCA
and Factor Models”, or [Ale08] Chapter II.1 “Factor Models”.
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The general idea of explaining asset price movements, or deriving (ex-ante)
expected asset returns, with a linear multi-factor model was initially popu-
larized by the Arbitrage Pricing Theory (of Capital Asset Pricing) developed
by [Ros76].

In this paragraph, we firstly specify a basic linear multi-factor model
to explain the excess returns of (historically simulated) PCF portfolios in
Section 4.3.1 and then, based on this, develop customized regression-based
models on single fund level for different (Asset Metrix) Types in Section
4.3.2.

4.3.1 The Basic Model on Portfolio Level

The basic model on portfolio level is a regression-based, linear multiple fac-
tor model with commitment-weighted xR

NAV , denoted by Yi, as dependent
variable, which uses chronological cross-sectional26 data stemming from m

historically simulated portfolios (therefore i = 1, 2, . . . ,m)

R

NAV
i � r

riskfree
i := Yi = ↵+ �1Xi,1 + . . .+ �kXi,k + ✏i

with k 2 N possible risk factors X. The intercept is denoted with ↵, the
factor loadings with � and the (uncorrelated) error term with ✏. In our
framework, we explicitly do not introduce any diversification assumptions
which eventually allow us to neglect the noise term ✏. In fact, the error term is
essential in the PCF context as it might comprise the private capital specific
residual return/risk component, alternative investments are recognized for.
Generally, econometricians are eager to find (a model with) as many as
possible (significant) explanatory risk factors, as with any additional factor
it becomes more reasonable to assume that the noise term is not correlated
with the risk factors (as a convenient side effect). Obviously, a model’s
greater explanatory power is the main effect of more descriptive factors.
However, over-fitting is definitely to be avoided.

Factors in the Private Equity Literature There exist several multi-factor
models for private equity returns in the academic literature; their focus is

26 We have multiple observations of PCF xR

NAV ’s per date, as we - by chance - sample
multiple portfolios for at least some dates. Hence our approach implicates overlapping
time periods, where each portfolio return is considered as a separate realization of the
combined asset class returns plus noise in the given period. So, there exist a natural
chronological ordering of our historically simulated data, which makes our data a hybrid
(data-type) between time-series and cross-sectional. An accurate or classical time-series
regression with one observation per date is hardly viable since we have only 20 years of
data and a one-year period.
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though the determination of systematic private capital risk, i.e. the risk
of the aggregated asset class. Nevertheless, considering four models of the
most recent papers gives us a good overview over possible significant factor-
candidates. So, we briefly discuss their methodologies and examine their
incorporated independent variables.

The [FNP12] model follows [Coc05] by assuming log-normally distributed
one-period returns (of single private equity investments) as the dependent
variable. Their four independent variables (a) excess equity market return,
(b) HML (high minus low book-to-market ratio portfolio return), (c) SML
(small minus big market capitalization portfolio return), and (d) IML (illiq-
uid minus liquid portfolio return) originate from [PS03], whereby the first
three factors are from the famous [FF93] model. To control for outliers in
the return distribution on single investment level27, they “group individual
investments into portfolios” and use the (gross geometric mean of) portfolio
log-returns as dependent variable. Factor loadings are then estimated using
a cross-sectional OLS regression.

[JKP15] estimate the risk and expected return of listed, i.e. publicly
traded, private equity funds (and fund of funds) by generating “value-weighted
indices for various categories of listed entities”. Ultimately, they apply a
time-series OLS regression with dependent variable excess private equity in-
dex return and the six independent variables (a) excess equity market return,
(b) HML, (c) SMB, (d) MOM (“a momentum factor” introduced by [Car97]),
(e) GDP growth (normalized by standard score), and (f) credit spread (nor-
malized by standard score).

[PPH14] propose risk models for various alternative investment types:
private equity (particularly: buy out and venture capital), real assets (par-
ticularly: real estate, infrastructure, farmland, timberland, and natural re-
sources), and hedge funds (including exotic beta strategies like momentum,
carry, value, volatility, etc.). Their dependent variables are (aggregated) al-
ternative asset class returns reported by data providers. Since the authors
suppose that “the available asset return series may be smoothed”, they “ad-
just for the smoothing effect,” in such a way that their “model assumes that
observed index returns represent a ’moving average’ of the current and past
’true’ investment returns.” This method is similar to the [Dim79] approach,
as the “model uses transformed risk factor returns that account for the lag
structure of the index.” Altogether, they consider various independent vari-

27 [FNP12] use cash flow data of the underlying investments undertaken within PCFs.
Thus, they form portfolios of investments, which are comprised in different PCFs, but
started at the same (monthly) date.
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ables to account for the variety of alternative investment types. The final
model for a given (alternative) asset class includes naturally only a signifi-
cant subset of risk factors. Such factors are e.g. (a) equity market return,
(b) HML, (c) SMB, (d) IML, (e) several industry index returns, (f) corporate
high-yield spread, and (g) 10-year government bond yield, among others.

[Pha10] describes in his survey, covering different methods of measuring
private equity investments’ risk and return, an “NAV-Based Regression Ap-
proach for Private Equity Funds” using quarterly excess NAV returns and
a staleness correction in the sense of [Dim79]. “Betas are then estimated
via a time-series OLS regression of returns on contemporaneous and lagged
risk factors (market excess return).” The dependent variable is exactly the
excess NAV return described in Eq. (4) with a quarterly period length and
the independent variables are (a) excess equity market return (unlagged, and
with lags of 1, 2, 3, and 4 quarters), (b) HML, and (c) SMB.

Variable Selection/ Factor Screening List of possible (risk) factors X1,...,k

and appearance in above mentioned models:

Variable Describtion Used in PCF context by
EMR Excess market return

(also [FF93]-factor)
[FNP12] (a), [JKP15] (a),
[PPH14] (a) & (e) {but non-excess
in [PPH14]}, [Pha10] (a)

HML [FF93]-factor [FNP12] (b), [JKP15] (b),
[PPH14] (b), [Pha10] (b)

SMB [FF93]-factor [FNP12] (c), [JKP15] (c), [PPH14]
(c), [Pha10] (c)

RMW [FF14]-factor -
CMA [FF14]-factor -
MOM [Car97]-factor [JKP15] (d)
IML [PS03]-factor [FNP12] (d), [PPH14] (d)
GDP GDP growth rate [JKP15] (e)
HYS (High-)yield spread [JKP15] (f), [PPH14] (f)
Yield Yield curve rate [PPH14] (g)

We now need a method to decide which variables (from the above ta-
ble) should be included in our regression model. On a naive technical level,
we can distinguish between stepwise regression (forward selection/backward
elimination) vs. all possible regression selection procedures for finding the
best subset of explanatory variables; whereas best roughly means as sparse
and as uncorrelated as possible. However, automated stepwise model selec-
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Fig. 4: Independent variables vs. dependent variable of OLS regression

tion procedures may generally be delicate or even in some cases disastrous
as it involves repeated hypothesis testing28.

Basic OLS Regression Results On the bottom line, we decide on a linear
model for explaining commitment-weighted xR

NAV ’s

Yi = ↵+ �EMRXi,EMR + �HY SXi,HY S + �IMLXi,IML + ✏i

with the three factors excess market return (EMR), high-yield spread (HYS),
and illiquid minus liquid portfolio return (IML). The univariate scatter-plots
of independent variables vs. dependent variable (see Figure 4) indicate pos-
itive linear dependencies between Y and XEMR and XIML and a negative
linear dependency between Y and XHY S , which seems reasonable from an
economic point of view. With the first sanity check passed, our (basic) linear
model can be written in the matrix notation of [RPD98] Chapter 3, as

Y = X� + ✏ (16)

with

Y: the m⇥1 column vector of observations on the dependent variable
�

R

NAV � r

riskfree
�

, where m is the sample size (of historically
simulated portfolios),

X: the m ⇥ (1 + 3) matrix consisting of a column of ones, followed
by the three column vectors of the observations of independent
variables: EMR, HYS, and IML,

28 See e.g. [KJ13] Chapter 19 “An Introduction to Feature Selection” or [HTF09] Chapter
3.3 “Subset Selection” for general variable selection discussions.
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�: the (1 + 3) ⇥ 1 vector of parameters to be estimated (note that
the first element of the vector � is the scalar ↵ in our notation),
and

✏: the m⇥ 1 vector of random errors.

We use the (observed) data X and Y to estimate the unknown � and ✏. The
method of least squares allows us to find a closed-form expression29 for the
estimated regression coefficients (i.e. factor loadings)

�̂ =
�

X

T
X

��1
X

T
Y

and, moreover, to derive the vector of residuals directly from the sample data

✏̂ = Y � Ŷ

where the vector of estimated means is given by

Ŷ = X

ˆ

� =
h

X

�

X

T
X

��1
X

T
i

Y

If we assume that ✏ is an independent and identically distributed (i.i.d.)
normal random variable30 with mean zero and variance �

2, then Y is multi-
variate normally distributed

Y ⇠ N

�

X�,�

2
I

�

where I is the identity matrix, since all covariance terms are assumed to be
zero. Though [RPD98] notes on page 88 that “this result is based on the
assumption that the linear model used is the correct model. If important
independent variables have been omitted or if the functional form of the
model is not correct, X� will not be the expectation of Y.”

The R output of our basic linear model (see Figure 5) might suggest a
good and explanatory model at first sight, as all three independent variables

29 The unique “pseudo-inverse” solution only exists when XTX is non-singular.
30 “The conventional tests of hypotheses and confidence interval estimates of the param-

eters are based on the assumption that the estimates are normally distributed. Thus, the
assumption of normality of the ✏i is critical for these purposes. However, normality is not
required for least squares estimation. Even in the absence of normality, the least squares
estimates are the best linear unbiased estimates (b.l.u.e.). They are best in the sense
of having minimum variance among all linear unbiased estimators” (see [RPD98] p. 77).
This is the result of the famous Gauss–Markov theorem, which states, that the residuals
do not need to be normally nor i.i.d. distributed, just uncorrelated with expectation zero
and homoscedastic with finite variance, to ensure, that the OLS regression coefficients are
the “best linear unbiased estimates”.
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Fig. 5: R summary output: OLS regression of basic linear model

Fig. 6: OLS residuals and normal distribution fit
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Fig. 7: Time evolution of residuals from OLS regression

seem highly significant with all p-values < 2e�16. However, we know that
our specific ten fund test portfolio xR

NAV data Y from Section 4.2.3 is
positively skewed and leptokurtic. This might indicate, that we generally
can not expect normality of idiosyncratic returns, i.e. residuals, in the PCF
context. Therefore, the non-normal distribution of residuals from our basic
linear model, visualized in Figure 6, is no big surprise; here, the residuals
and the dependent variable exhibit quite similar features with respect to
their distribution (recall: Figure 1).

As yet, the chronological character of the data is neglected in our re-
gression analysis. Though the historically simulated data inheres a natural
sequential order by groups of quarterly observations. Standard tests of au-
tocorrelation in regression analysis (like the Durbin-Watson statistic) are
therefore not meaningful and even misleading, as there exists no strict or-
der of each single element in our data. So the clear time-dependency, i.e.
time-pattern of similar adjacent residuals, in Figure 7 should not be labeled
“serial correlation problem” to avoid confusion; we can use the terms “pseudo-
autocorrelation” or conspicuous “time-pattern” instead. However, the final
conclusion, that the i.i.d. assumption of residuals does not hold in our re-
gression, is the same. There seems to be a regime-change in the year 2001
or, otherwise stated, the conditions in the period from 1998 until 2001 cause
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the right tail in Figure 6 (in a large part).
Appendix B discusses possible remedies to account for violations of the

normality and homoscedasticity assumption of regression residuals.

4.3.2 Factor Models for Various Fund Types

In the previous section (and in Appendix B) likely issues associated with
the decomposition of xRNAV ’s via linear factor models are introduced and
summarized using the educational example of the ten fund test portfolio from
Section 4.2.3. With the general PCF specific challenges in mind, we now
develop individual AMT-factor-models (on single fund level) based on the
three-factor model from Eq. (16), which are incorporated in the subsequent
Monte Carlo simulation in Section 4.4.

The little more general model formulation in matrix notation here is

YAMT = f (XAMT |�AMT ) + ✏AMT

to explain the xRNAV ’s of PCFs belonging to one Asset Metrix Type: AMT =
{BO,VC,FOF,DD,RE,MEZZ, Infra,NatRes}. In contrast to many other
settings, where just the determination of the dependent variable’s condi-
tional mean is of exclusive importance, we may not neglect the residual
term in the above equation. Firstly, in some regression models (beyond
OLS), where possibly E (✏) 6=0, even the mean of the dependent variable
depends on the error distribution31. Secondly, the residual (i.e. unexplain-
able part of the return = idiosyncratic return) distribution is (a) perchance
too complex for simple parametric modeling and (b) extremely relevant
for Value at Risk applications, as they essentially define the tail behav-
ior of return distributions. Therefore, we follow the approach of separating
beta estimation from residual modeling. Luckily, the (estimated) error term
can be easily calculated once the regression coefficients are estimated, as
✏̂AMT = YAMT � f

⇣

XAMT

�

�

�

�̂AMT

⌘

. This method theoretically comes with
the benefit, that, even though the models are designed for single fund returns,
we can use aggregated (portfolio/index) data to estimate factor loadings, as
long as we calculate the corresponding errors with single fund data.

Beta Estimation We can choose between four (valid) regression approaches
for estimating the factor loadings of our linear AMT-factor-models. On
the one hand, we can use either (minimum diversified) single fund data or
(maximum diversified) AMT-index32 data for the analysis. On the other

31 The famous bias vs. variance trade-off is related to the issue of biased estimators.
32 See Appendix B point 6 for a first AMT-index construction proposal.
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hand, we can opt between an OLS or an alternative, robust regression tech-
nique. Naturally, each procedure comes with its own dis/advantages and
neither method guarantees to yield the absolute “true” result, i.e. the “best”
linear model. Generally, we expect biased estimators in every approach,
as we explicitly separate beta estimation from residuals modeling. This
is especially true since analysis with single fund data reveals heteroscedas-
tic errors with respect to the NAV at the analysis date and in some cases
time-patterns (or regime changes) in the error distribution. Further anal-
ysis shows leptokurtic and (just) slightly positively skewed residuals in the
majority of all PCF models. Therefore, robust regression procedures (like
e.g MM-estimation33) seem to be the (more) appropriate choice to obtain
regression coefficients explaining the essential behavior of conditional mean
xR

NAV ’s in the single PCF context. The details of robust regression ap-
proaches of the M/S/MM-estimation family are best studied in textbooks
on robust statistics like [MMY06]. Here MM-estimation is characterized as
an advanced robust regression method, combining the advantages of M- and
S-estimation, to obtain estimates that have a high breakdown point34. This
property suggests the use of MM-estimation in our setting with a multitude
of xRNAV wild-shots (on single fund level). With diversified index data the
OLS method is possibly more justified35.

In the data issue, we tendentially favor the (equal commitment weighted)
index approach, as it promises beta factors for conditional asset class or, to
be more precisely, mean returns of an (equal commitment weighted) AMT-
class-investor. Single fund data probably would have to be time-weighted
(and maybe additionally filtered) in a sophisticated manner36 to attain valid
asset class expectations, as single fund observations are highly unbalanced in
the time dimension due to PCFs’ rising popularity over time. Moreover, clas-
sical time-series regression with index data avoids wild-shot problems related

33 “The asymptotic theory for M-estimates, which includes S- and MM-estimates, has
been derived under the assumption that the errors are i.i.d. and hence homoscedastic.
These assumptions do not always hold in practice. [...] Actually the assumptions of inde-
pendent and homoscedastic errors are not necessary for the consistency and asymptotic
normality of M-estimates. In fact, it can be shown that these properties hold under much
weaker conditions.” [MMY06], p. 153.

34 “Roughly speaking, the breakdown point (BP) of an estimate ˆ

✓ of the parameter ✓ is
the largest amount of contamination (proportion of atypical points) that the data may
contain such that ˆ

✓ still gives some information about ✓, i.e., about the distribution of the
“typical” points.” [MMY06], p. 58.

35 Particularly since OLS and MM estimates are quite similar when aggregated with the
Index Quagging method (introduced in the next passage); compare Table 5 and 6.

36 E.g. bootstrapping AMT samples with a desired time-distribution.
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AMT

deterministic stochastic

(Int)
High Excess Index Returns Liq Q1 Q2 Q3 Q4

Bias Yield World NAS
US-RE

10-1 adj. adj. adj. adj.
Corr Spread Equity DAQ PF R

2
R

2
R

2
R

2

BO 0.188 ? -2.020 0.573 - - - 0.60 0.47 0.55 0.66
VC 0.300 ? -4.249 - 0.993 - - 0.34 0.31 0.28 0.29
FOF 0.058 ? - 0.830 - - - 0.14 0.17 0.10 0.11
RE 0.141 ? -1.759 - - 1.095 - 0.55 0.64 0.74 0.54
DD - ? 1.036 0.562 - - - 0.62 0.63 0.62 0.61

Tab. 5: OLS-estimates of linear model coefficients obtained via Index Quag-
ging explaining one-year xR

NAV ’s .

AMT

deterministic stochastic

(Int)
High Excess Index Returns Liq Q1 Q2 Q3 Q4

Bias Yield World NAS
US-RE

10-1 adj. adj. adj. adj.
Corr Spread Equity DAQ PF R

2
R

2
R

2
R

2

BO 0.191 ? -2.079 0.584 - - - 0.78 0.51 0.53 0.69
VC 0.191 ? -3.372 - 0.510 - - 0.66 0.52 0.66 0.50
FOF 0.084 ? - 0.419 - - - 0.04 0.11 0.05 0.40
RE 0.113 ? -1.392 - - 1.050 - 0.84 na 0.72 0.83
DD - ? 0.963 0.580 - - - 0.64 0.65 0.67 0.78

Tab. 6: Robust MM-estimates of linear model coefficients obtained via Index
Quagging explaining one-year xR

NAV ’s.

AMT

deterministic stochastic

(Int)
High Excess Index Returns Liq

Bias Yield World NAS
US-RE

10-1 adj.
Corr Spread Equity DAQ PF R

2

MEZZ 0.101 ? -0.922 0.206 - - - 0.05
NatRes 0.064 ? -1.042 0.498 - - - 0.07
Infra 0.079 ? -0.859 0.261 - - - 0.02

Tab. 7: Robust MM-estimates of linear model coefficients obtained from un-
filtered single fund data explaining one-year xR

NAV ’s.
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to heteroscedasticity and autocorrelation. Though, the index time-series ap-
proach comes with two drawbacks because there exist (a) four equivalently
valid time-series with yearly intervals (and non-overlapping periods) start-
ing at different quarters, which are (b) relatively short (20-25 data points,
as data starts in the early 1990’s). But here we can make a virtue out of ne-
cessity. In a subsequent Monte Carlo simulation, we can simply use all four
models by sampling with equal probabilities among them, which increases
the variability of simulated returns and additionally highlights the stochastic
character of every linear model. For communication purposes, we are free
to aggregate the four quarterly estimates by averaging out the coefficients.
The resulting quagging37 coefficients are finally reported as our best beta
factor estimates. The fall-back option for factor loading estimation is a ro-
bust regression on the total AMT single fund data set, in cases where the
index-quagging approach fails. Clearly, regressions on single fund data come
with the advantage of being capable of integrating more fund specific factors
(like region, domestic index return, fund age, etc.) into the analysis.

Tables 5 and 6 exhibit the OLS- and MM-estimates of the regression co-
efficients of the eight linear AMT-factor-models, which are generally similar
in sign and magnitude. The factors are subdivided into deterministic, i.e.
known at analysis date, and stochastic, i.e. unknown at analysis date, predic-
tors. Additionally, a column for a potential bias correction is inserted in the
tables, to put the possibility of a random bias, i.e. non-zero mean residuals,
in mind. As the residuals modeling is not tackled yet, no assertions about
the sign and magnitude of a potential bias can be made. Thus, in contrast to
standard regression model outputs, no (robust) residual standard errors are
reported here to avoid confusion. However, we report adjusted R

2 figures for
all four quarters (in Tables 5 and 6) to call to mind, that the displayed co-
efficients are aggregated quantities. In contrast, there is only one coefficient
of determination R

2 for the single fund regressions of Table 7, which reveals
poor fits for AMTs Mezzanine, Natural Resources, and Infrastructure38.

Error Modeling The issues of (a) heteroscedastic errors with respect to the
NAV at the analysis date and (b) time patterns (or regime changes) in the
error distribution were already briefly mentioned in the above paragraph.
The sine qua non for modeling the error distribution appropriate for a given

37 The term quagging, short for quarterly aggregating, is inspired by [Bre96]’s famous
machine learning technique called bagging.

38 The main problem with those AMTs is the lack of data and therefore those are ad-
mittedly treated as orphans in our analysis. Expending more effort to those AMTs could
probably result in enhanced linear models with higher R

2 values.
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NAV partition NAV quantile Description
bottom 20% 0-20% discarded portion

top 80% 20%-100% retained overall set
20-60% 20%-60% retained wild subset
top 40% 60%-100% retained gentle subset

Tab. 8: Empirical error NAV partitions

AMT-factor-model is the resolution of these two problems. Only when the
empirical error distribution of ✏̂AMT is cleaned from unwanted wild-shots,
modeling approaches aim at the wanted, reasonable residual distribution.

The severe NAV-heteroscedasticity is caused by the design of RNAV in
Eq. (4), which facilitates an increasing variability in R

NAV with decreasing
NAVs at the analysis date, as the NAV (at analysis date) enters the equation
in the denominator. Figure 8 illustrates this phenomenon since there extreme
residual wild-shots mainly occur for small NAVs (at analysis date). The
simplest remedy of the NAV-heteroscedasticity is the determination of a
NAV cut-off-threshold, in such a way that xR

NAV observations with period
start NAVs below that threshold are eliminated. The dotted blue lines in
Figure 8 show e.g. NAV thresholds at the 20% quantile of observed NAVs
per AMT. However, the establishment of the most suitable cut-off-value is
anything but straightforward, as the VaR in the subsequent Monte Carlo
simulation heavily depends on the selected threshold figure. Eventually, we
decided to reject 20% of the smallest NAVs, i.e. cut-off at the empirical 20%
quantile, and further partition the remaining 80% of the data points into
two commensurate, complementary NAV-sorted groups, i.e. split at the 60%
quantile of the empirical NAV c.d.f. for a given AMT. The NAV-subsets (cf.
Table 8) are then used separately to model proper error distributions, which
can be compared in the final analysis of the comprehensive model.

Next, peculiar error time-pattern, regime changes or other features (i.e.
dependencies) over time have to be addressed, (just) if necessary. For Venture
Capital funds we could e.g. separate out the years 1999 until 2001, the
time of the so-called “internet bubble”, which was (perhaps) a unique, non-
repeating event. Even more important is the assumption of no (temporal)
cross-dependencies between the model errors of distinct AMTs to justify an
univariate residual modeling (with respect to the subsequent Monte Carlo
simulation). If there exist non-negligible inter-AMT-error-dependencies, a
single multivariate error distribution for all eight AMTs has to be conceived.
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Fig. 8: Plot of Index Quagging residuals vs. NAV

But, if there are no time-dependencies on univariate AMT level, then there
can not be multivariate inter-AMT time dependencies.

When all anomalies or sources of wild-shots are filtered out, we can ul-
timately start modeling the tamed error distributions using stochastic tech-
niques. Preferably, we should first check (i.e. tinker), if the residuals can
be decomposed further in a predictive way using e.g. machine learning tech-
niques. If not, errors have to be modeled en bloc; i.e. trying to recreate
the empirical distribution of independent residuals arising from linear AMT-
factor-models. The most obvious modeling (in the sense of replication) ap-
proaches are simple parametric models (like fitting a log-normal distribution)
or advanced parametric models (like fitting an SGT distribution or Gaus-
sianize the residuals using the Lambert Way; see Appendix B). Yet, none
of this methods yields convincing results. The residual distributions, which
are still leptokurtic and positively skewed in most cases (for most AMTs),
continue to be too complex, especially at the tails. Therefore, we personally
prefer sampling directly from the empirical error distribution as the simplest
method, which assures reasonable results with the highest probability, since
no model error is introduced by following this (non-parametric) approach.
Though, the most promising (parametric) statistical method to tackle the er-
ror distributions’ complexity is the application of finite mixture distribution
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models because they nicely decompose the distribution into sub-groups. This
is not only pleasant for illustrative purposes, but may be furthermore capable
of revealing attractive PCF characteristics latent in the residual distribution.
Since the sub-populations are unknown a priori “unsupervised clustering” or
“model-based clustering” procedures have to be applied to cluster the distri-
bution into sub-groups. In the R package “mixtools” EM algorithms drawing
on maximum likelihood estimation in the presence of incomplete data ac-
complish this task39, as standard MLE approaches are unusable, due to the
absence of global likelihood function maxima in the mixture distribution set-
ting. We use this package, and thus follow the derivation and notation of
[BCHY09] hereafter, to exemplarily fit two univariate normal mixture distri-
butions with 2 and 3 components, respectively, to the empirical distribution
of Index Quagging residuals of VC funds with NAVs above the 20% quantile
(see Figure 9). Concretely, we have a random sample of 5,245 error obser-
vations of the random variables X1, . . . , X5245, stemming from a mixture of
m = {2, 3} normal distributions with component densities � (· |µ,� ). The
density of each Xi may then be expressed as

g✓ (xi) =

m
X

j=1

�j�j (xi) , xi 2 R,

where ✓ = (�,�) = (�1, . . . ,�m, (µ1,�1) , . . . , (µm,�m)) denotes the param-
eter and the weights �m are positive and sum to unity. Hence, the em-
pirical residual distribution consists of n = 5245 i.i.d. observations x =
(x1, . . . , x5245) from the density g✓. In the missing observations setup of
[DLR77] g✓ is called the incomplete-data density, and the associated log-
likelihood is Lx (✓) =

Pn
i=1 log g✓ (xi), which is used to determine the max-

imum likelihood estimator by finding ✓̂x = argmax✓2� Lx (✓). The corre-
sponding complete-data density (for one observation) is

h✓ (xi, zi) =

m
X

j=1

Izij�j�j (xi)

where I is the indicator function, Zi = (Zij , j = 1, . . . ,m), and Zij 2 {0, 1} is
a binary Bernoulli-type random variable indicating that individual i comes

39 The term incomplete data is described in [DLR77] on page 1: “Since each iteration
of the algorithm consists of an expectation step followed by a maximization step we call
it the EM algorithm. [...] The term "incomplete data" in its general form implies the
existence of two sample spaces Y and X and a many-one mapping from X to Y . The
observed data y are a realization from Y . The corresponding x in X is not observed
directly, but only indirectly through y.”
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Fig. 9: Simulated 2 & 3-component normal mixtures vs. empirical distribu-
tion of VC Index Quagging residuals

form component j, with
Pm

j=1 Zij = 1. Consequently , P (Zij = 1) = �j

gives the probability that individual i belongs to the j-th normal distribution
and, clearly, (Xi |Zij = 1) ⇠ �j (· |µj ,�j ), for j = 1, . . . ,m.

The EM algorithm iteratively maximizes the operator

Q

⇣

✓

�

�

�

✓

(t)
⌘

= E
h

log h✓ (X,Z)
�

�

�

x, ✓

(t)
i

where ✓

(t) is the current value at iteration t. The EM-algorithm procedure
from iteration t to t+ 1 consists of an E(xpectation) and a M(aximization)
step

1. E-step: compute Q

�

✓

�

�

✓

(t)
�

2. M-step: set ✓

(t+1) = argmax✓2�Q

�

✓

�

�

✓

(t)
�

So in every iteration, we obtain new values for the weights � and the asso-
ciated normal density parameters. The algorithm stops if a pre-defined con-
vergence criterion regarding the change in the observed data log-likelihood is
met. The procedure clearly depends on the selected starting parameter ✓(1);
however we use the package’s default setting for obtaining (random) starting
values in our specific example.

The fitted 3-component normal-mixture distribution, received after 273
iterations and visualized by the orange lines in Figure 9, is parameterized
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with
�1 = 0.810 : N (µ1 = �0.052, �1 = 0.211)

�2 = 0.171 : N (µ2 = 0.262, �2 = 0.583)

�3 = 0.019 : N (µ3 = 1.939, �3 = 2.170)

and therefore adds up to a bias correction coefficient of 0.039, which is the
mean of this mixture distribution.

The decomposition of xRNAV residuals exhibits again the great impor-
tance of the error terms in the context of AMT-factor-models. The general
method of separating beta estimation from error modeling allows us to build
several linear models for each AMT and then, in a next step, decompose the
resulting residual distributions with greater effort than in usual OLS or even
robust regression approaches. In Monte Carlo simulation applications, we
are free to semi-randomly sample, i.e. proceed in the spirit of bagging, from
this repertory of plural �- and ✏-models40.

4.4 Fund to Portfolio Aggregation (Monte Carlo)

Monte Carlo (MC) simulation methods, i.e. statistical models or computa-
tional algorithms depending on streams of random numbers, are commonly
viewed as a powerful and flexible means to generate return or profit and loss
distributions for portfolios consisting of several heterogeneous assets with
complex dependency structures. Their biggest advantage is the ability to
create a great variety of different (factor) scenarios and the corresponding
financial outcomes by combining (rather simple) parametric models in a
sophisticated way. Random sampling from an MC model thus allows to rel-
atively easily approximate the financial return distribution of a given port-
folio, even if analytical solutions to the high-dimensional problem are not
available. In our specific case, we attempt to transform and aggregate the
individual regression-based AMT-factor-models from Section 4.3.2 to a com-
prehensive “sample-able” Monte Carlo model tailored for VaR calculation of
PCF portfolios. To our knowledge, the MC simulation procedure, adopted in
this section, is the first in the academic literature for simulating VaRs with
a one-year horizon in the PCF context. [BKSW10] developed the probably
most closely related Monte Carlo simulation method to calculate Value-at-
Risks for IRRs of venture capital fund investments. Their focus is hence

40 When we estimate several �-models (a so-called ensemble of models in machine learn-
ing terminology), feature selection should always be considered as the first step of the
model-building process, in theory.
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rather “performance projection” than (one-year horizon) risk management.
General (public market) textbook literature for VaR simulation by means
of MC techniques can be found e.g. in [Jor06] Chapter 12 “Monte Carlo
Methods” or in [Ale08] Chapter IV.4 “Monte Carlo VaR”.

In Section 4.4.1, we cover the missing part of our MC model, i.e. the
construction of multivariate input-factor distributions, which can be consid-
ered as the engine of our MC model. In the next Section 4.4.2, the actual
MC model is introduced by combining the sub-models for �-estimation, ✏-
modeling, and X-factor construction.

4.4.1 Multivariate Factor Construction

A general (regression-based) linear multi-factor model

Y = X� + ✏

consists of three terms on the right-hand side: a factor matrix X, a factor
loadings vector �, and a vector of (unexplainable) errors ✏. In Section 4.3.2
some feasible �-estimation and ✏-modeling approaches are introduced. Con-
sequently, only the modeling of the independent variables X is left, to com-
plete a Monte Carlo model of Y. Several eligible approaches for X-generation
are therefore presented in this section, i.e. finding one multivariate model
for the (public market) factors outlined in Section 3.2.

Technically, the missing MC component is the vector41
X = (X1, . . . , Xd)

constituting one possible (simulated) factor outcome. Hence, the joint (i.e.
multivariate) cumulative distribution function (c.d.f.)

F (x) = F (x1, . . . , xd) = P (X1  x1, . . . , Xd  xd)

of the MC model’s d input factors is of interest. In this section, several viable
X-generation options are introduced. At first, (non-parametric) historical
factor outcome sampling is always an option. The most basic (parametric)
one is a multivariate normal distribution model for the factors

X ⇠ N (µ, ⌃)

characterized (completely) by the mean vector µ and the covariance matrix
⌃. However, in virtue of the normal distribution’s parsimony this model is
not capable of neither generating leptokurtic or skewed (univariate) factor

41 In regression models X is a matrix and � is a vector (see Eq. (16)). In our MC model
X is a vector and � is a matrix (see Eq. (21)).
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distributions42 nor describing complex interdependencies between factors.
Therefore, the application of copula methods seems advantageous (and state
of the art), as they are a powerful concept to strictly separate dependency
modeling from specifying the marginal (cumulative) distribution (function),
which is obtained from the joint c.d.f. through

Fi (xi) = P (Xi  xi) = F (1, . . . ,1, xi,1, . . . ,1)

The two (bottom-up) steps in copula modeling are

1. univariate (parametric) models FX for each factor Xi

2. copula model C describing the dependence between factors

whereby this elegant decomposition generally succeeds because of Sklar’s
theorem.

Sklar’s Theorem (1959) For a d-variate cumulative distribution function
F 2 F(F1, ..., Fd), with j-th univariate margin Fj, the copula associated with
F is a distribution function C : [0, 1]d ! [0, 1] with U (0, 1) margins that
satisfies

F (x) = C (F1 (x1) , . . . , Fd (xd)) , x 2 Rd (17)

and, if F is a continuous d-variate distribution function with univariate mar-
gins F1, ..., Fd, and quantile functions F

�1
1 , ..., F

�1
d , then

C (u) = F

�

F

�1
1 (u1) , . . . , F

�1
d (ud)

�

, u 2 [0, 1]d

is the unique choice (see [Joe15], p. 7).

Thus, a copula C is a joint c.d.f. (of a vector of random variables U) with
all univariate margins being standard uniformly distributed Ui ⇠ U (0, 1) and
a desired dependency structure inherent. Therefore, inverse transform sam-
pling (also known as inverse probability integral transform) may be applied
within Monte Carlo simulations, if all selected marginal distributions have
invertible c.d.f.’s (or - to be more realistic - if good (numerical) approxima-
tions of the quantile function exist), since

P

⇣

F

�1
Xi

(Ui)  x

⌘

= FXi (x)

42 The fitting of multivariate generalized hyperbolic distributions (normal mixtures) by
applying the EM-algorithm, described in [MFE05] Chapter 3.2.4, may be used to obtain
more complex marginals.
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or equivalently
Xi = F

�1
Xi

(Ui)

where Fi (xi) ⌘ FXi (xi), Ui ⇠ U (0, 1) is e.g. the i-th component of a
copula, FXi : R ! (0, 1) is the selected marginal c.d.f. of the i-th factor,
and F

�1
Xi

: (0, 1) ! R the respective inverse. So in a Monte Carlo imple-
mentation, the d simulated draws from dependent uniform distributions are
inserted in the corresponding marginal quantile functions. The determina-
tion of the univariate marginal (factor) distributions is generally perceived as
the easy part of the copula framework. Getting an idea of the (multivariate)
dependence structure, i.e. the copula, is considerably harder and [Joe15]
notes in the introduction of his extensive copula textbook that “the difficult
step in copula construction is the extension from bivariate to multivariate to
get flexible dependence” (see [Joe15], p. 2).

Since the building of high-dimensional copulas is regarded very difficult, if
heterogeneous and complex dependencies exist between variables, Pair Cop-
ula Construction (PCC) techniques are (currently) in the focus of academic
research. The idea behind PCC is to create high-dimensional (i.e. multivari-
ate) copulas out of (bivariate) copula pairs and “thus exploiting the richness
of the class of bivariate copulas and providing a flexible and convenient way
to extend the bivariate theory to arbitrary dimensions” (see [MS12], p. 185).
Next, we follow [ACFB09] to outline how to decompose a general multivari-
ate distribution into pair-copulae. First, the joint density function of X gets
factorized as

f (x) = fd (xd) · f (xd�1 |xd ) · f (xd�2 |xd�1, xd ) · · · f (x1 |x2, . . . , xd ) (18)

which is equivalent to

f (x) = c1···d (F1 (x1) , . . . , Fd (xd)) · f1 (x1) · · · fd (xd) (19)

(which is obtained by) differentiating Eq. (17) of Sklar’s theorem using the
chain rule, if F is absolutely continuous with strictly increasing, continuous
marginal densities and the (uniquely identified) d-variate copula density c1···d
exists43. The general approach of pair-copula decomposition, explained in
more detail by [ACFB09] in Section 2, is to express each term in Eq. (18)
with appropriate (conditional and unconditional) bivariate pair-copula den-
sities obtained from Eq. (19). For e.g. d = 3 the third, i.e. also the last,
term of Eq. (18) can be written as

f (x1 |x2, x3 ) = c13|2 (F (x1 |x2 ) , F (x3 |x2 )) · c12 (F (x1) , F (x2)) · f1 (x1)
(20)

43 Therefore, the copula has to be differentiable.
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with unconditional pair-copula density c12 and conditional pair-copula den-
sity c13|2 , applied to the transformed variables F (x1 |x2 ) and F (x3 |x2 ).
However, the right hand side of Eq. (20) is not unique, i.e. there exists an
alternative pair copula decomposition of f (x1 |x2, x3 ), since this decompo-
sition is generally just unique for the second term of Eq. (18).

For high-dimensional distributions, there is a considerable number of pos-
sible pair-copulae decompositions. This enormous flexibility comes with the
price of making PCC confusing and challenging from a conceptional and
also from a notational perspective. To stay on top of things, the framework
of “regular vines”, technically a graphical model generalizing the concept of
trees44, can be used to organize PCC in a more comprehensible way. How-
ever, it is just convenient not indispensable to use R-vines (regular), C-vines
(canonical), or D-vines in PCC, like [ACFB09] note on page 4, “that the
tree structure is not strictly necessary for applying the pair-copula method-
ology, but it helps identifying the different pair-copula decompositions.” Pri-
marily, all copula and marginal c.d.f.’s must have a first derivative, i.e. a
density, to employ PCC. Though, this implies that the marginal distribu-
tions are or have to be known, which is not realistic in practice45. Further
[ACFB09] note on page 15, that “full inference for a pair-copula decomposi-
tion should in principle consider (a) the selection of a specific factorization,
(b) the choice of pair-copula types, and (c) the estimation of the copula pa-
rameters.” In the R implementation of our MC model, we use the terrifically
handy RVineStructureSelect() function from the “VineCopula” package to
specify and determine a complete, i.e. all three inference components at one
go46, R-vine copula model for our d independent factors. Figure 10 depicts
P(d�1)

j=1 j = (d�1)2+(d�1)
2 pairs of 1,000 simulated factor uniforms, generated

from the R-vine copula model obtained by the RVineStructureSelect() func-
tion (with default setting).

In the next step, the marginal factor distributions have to be determined.
This is (again) preferably accomplished via MLE for simple parametric mod-
els. If (more) appropriate, finite mixture distributions can naturally be es-

44 The purpose of regular vines (R-vines) is to graphically designate (un/conditional)
two-dimensional constraints in multivariate probability distributions.

45 [ACFB09] state in the section considering inference for a specified pair-copula de-
composition on page 12, that “it is important to emphasize that unless the margins are
known (which they never are in practice), the estimation method presented below then
must rely on the normalized ranks of the data. These are only approximately uniform and
independent, meaning that what is being maximized is a pseudo-likelihood.”

46 See [ACFB09] page 14, for a likelihood evaluation algorithm, which numerically opti-
mizes the D-vine log-likelihood.
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Fig. 10: Pairs of simulated R-vine copula uniforms describing X-factor de-
pendencies
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timated with the familiar EM-algorithm from Section 4.3.2. Yet, we finally
model the marginal distributions of

xRWE : the excess return of a world equity index (generalized) t-distributed
with xRWE = µ + �T , where µ = 0.066, � = 0.185, and T ⇠
t (df = 19.39),

xRNAS : the excess return of the NASDAQ equity index (generalized) t-
distributed with xRNAS = µ + �T , where µ = 0.098, � = 0.245,
and T ⇠ t (df = 6.25),

xRRE : the excess return of a US commercial real estate index SGT-
distributed (Skewed Generalized T) with
xRRE ⇠ SGT (µ = 0.034, � = 0.124, � = �0.537, p = 1.255, q = 3.686),

log (SHY ): the logarithm of US high-yield spreads log-normally47 distributed
with log (SHY ) ⇠ LN (µ = 0.480, � = 0.260) /100, and

Rliq: the return of the liquidity portfolio factor from [PS03] normally
distributed with Rliq ⇠ N (µ = 0.014, � = 0.049).

Note, that the high-yield spreads actually need no stochastic modeling at
all, since they are know a priori in applications of the MC model. Just, if
we want to compare historical with MC simulations, stochastic high-yields
spreads are required.

4.4.2 Monte Carlo Model

With the �-estimation and ✏-modeling approaches from Section 4.3.2 and the
X-factor construction methods from Section 4.4.1 all building blocks for a
Monte Carlo simulation are available. In our Monte Carlo model, we combine
multiple AMT-factor-models to build a comprehensive model, which shall be
capable of generating PCF portfolio specific xR

NAV ’s samples. Once again,
we have to remark the essential MC model assumptions that there are no
inter-AMT-error-dependencies and the NAV-heteroscedasticity is resolved
satisfactorily, to justify i.i.d. error sampling/modeling.

Then, we are ready to formulate our Monte Carlo model for the xR

NAV

vector (of all m single PCF portfolio components) in terms of a parameter
47 This mean, that log (log (SHY )) ⇠ N (µ,�), which eventually leads to too much

positive skewness. The double logarithmic modeling of high-yield spreads may thus
be regarded as a worst case specification; log (SHY ) ⇠ N (µ,�) is probably more ap-
propriate, however perhaps a little bit too optimistic; the alternative parametrization is
log (SHY ) ⇠ N (µ = 1.671 ,� = 0.429) /100.
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Fig. 11: Illustration of � and ✏ method selection in MC simulation

vector #, which contains the distinct data and methodology selection options
on-hand:

Y

(MC) (#) = �#AMT,�
X#X + ✏#AMT,�,✏

(21)

with
�#AMT,�

=
⇣

�i=(#AMT,�)i, j

⌘

X#X =
⇣

Xj=(#X)j

⌘

✏#AMT,�,✏
=
⇣

✏i=(#AMT,�,✏)i

⌘

where i 2 [1, 2, ...,m], j 2 [1, 2, ...., d, d+ 1], m is the number of PCF portfo-
lio components, and d is the (overall) number of factors in (all) MC �-models.
With this specification, we obtain

Y

(MC): the sought m⇥1 column vector of (Monte Carlo) simulated single
PCF xR

NAV ’s,

�#AMT,�
: a m⇥(1 + d) matrix consisting of rows of AMT-appropriate factor

loadings,

X#X : a (1 + d)⇥1 column vector consisting of a scalar one (for the inter-
cept), followed by all d simulated independent variable outcomes,
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✏#AMT,�,✏
: a m ⇥ 1 column vector of randomly sampled AMT-appropriate

errors,

which are defined via the parameter vector # = (#AMT , #X, #� , #✏) with

#AMT : the eight Asset Metrix Types: Buy Out, Venture Capital, Fund of
Funds, Real Estate, Distressed Debt, Mezzanine, Infrastructure,
and Natural Resources,

#X: the X-generation options:

X-method: Multivariate normal, historical sampling, and R-vine
copulas,

X-data: -

#� : the �-estimation options:

�-method: Ordinary least squares, and robust MM-estimation,
�-data: Quarterly separate AMT-index data, Index Quagging

data, and single fund data,

#✏: the ✏-modeling options:

✏-method: empirical sampling, and mixture distribution,
✏-data: NAV cut-off threshold, further NAV partitions.

Since we have linear portfolios, we can calculate the comprehensive PCF
portfolio xR

NAV , denoted by Y

(PCF ), by simply adding the NAV-weighted
components of (the column vector) Y

(MC) up

Y

(PCF ) = (wNAV )
T
Y

(MC) (22)

where (wNAV )
T is the (transpose of the m⇥1 column) vector of correspond-

ing portfolio NAV-weights defined in Eq. (9).

Simulation Algorithm The procedure, symbolized by Eq. (21), has to be
iterated k-times to obtain a (Monte Carlo) simulated PCF portfolio xR

NAV

vector Y

(PF ) consisting of k components:

Iterate k-times

1. Simulate: the vector Y

(MC)
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1.a) X-generation: create macro-condition
1.b) �-model-selection: use factor loadings from
pre-determined �-model

Option: (randomly) draw a �-model
from the repertory of available mod-
els48

1.c) ✏-term-sampling: (randomly) draw �-model-
appropriate residual terms

Option: sample multiple errors for one
factor scenario X

1.d) Calculate Eq. (21) with X, � and ✏ from
the previous steps

2. Calculate: the scalar Y

(PCF ) with Eq. (22)

to generate (a sample of) k possible PCF portfolio xR

NAV ’s.

With the k-dimensional vector Y

(PF ) =
⇣

Y

(PCF )
1 , Y

(PCF )
2 , . . . , Y

(PCF )
k

⌘

2
Rk of PCF portfolio xR

NAV ’s, i.e. a length k i.i.d. sequence of MC model
outcomes, it is straightforward to calculate the empirical cumulative distri-
bution function

F̂

Y(PF )

k (y) :=
1

k

k
X

i=1

I
Y

(PCF )
i <y

and Value at Risks using the plug-in estimator, which is the associated em-
pirical generalized inverse function

⇣

F̂

Y(PF )

k

⌘�1

↵
:= inf

n

y 2 R : F̂

Y(PF )

k (y) � ↵

o

in a subsequent step.

Convergence of Empirical Distribution Function By the strong law of
large numbers, the estimator F̂

Y(PF )

k (y) converges (point-wise) to the “real,
but latent” c.d.f. F (y) as almost surely, for every fixed value of y

F̂

Y(PF )

k (y)
a.s.! F (y)

48 The idea of �-model sampling can be compared to the concept of ensemble learning (or
bagging) in statistical learning (see [Bre96]). The lecture of machine learning textbooks
like [HTF09, KJ13] is advised to get a sense of these concepts. See also point “Bagging”
in Appendix B.
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Fig. 12: Monte Carlo model concept map
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which makes the empirical distribution function an asymptotically consis-
tent estimator. The theorem of Glivenko–Cantelli strengthens this result by
proving uniform convergence

�

�

�

F̂

Y(PF )

k � F

�

�

�

1
⌘ sup

y2R

�

�

�

F̂

Y(PF )

k (y)� F (y)
�

�

�

a.s.! 0

which is stronger than point-wise convergence. However, the rate of conver-
gence is yet obtained by the central limit theorem, that uses the notion of
convergence in distribution, actually the weakest form of convergence, since
it is implied by all other types of convergence.

F̂

Y(PF )

k (y)
d! F (y) as k ! 1

or
lim
k!1

F̂

Y(PF )

k (y) = F (y)

Hence, the distribution of k · F̂Y(PF )

k (y) is binomial for each fixed y 2
]�1,1[

k · F̂Y(PF )

k (y) ⇠ B (k, F (y))

and thus F̂

Y(PF )

k (y) is asymptotically normal distributed

F̂

Y(PF )

k (y) ⇠ N
 

F (y) ,

r

F (y) [1� F (y)]

k

!

as k ! 1

(see [Ser80], p. 57). The main result of this asymptotical property of sample
quantiles49 is that the rate of convergence (for MC VaRs) is of order k

�1/2,
since

F̂

Y(PF )

k (y)� F (y)
d! k

�1/2 ·
p

F (y) [1� F (y)] · N (0, 1)

which means that appending one significant figure of accuracy requires in-
creasing k by a factor of 100. Clearly, we are free to determine confidence
intervals via resampling techniques, if we do not want to rely on vague asymp-
totical properties in practical applications.

49 See e.g. [Bah66, Ser80, HL11] for more details on sample quantile and Monte Carlo
Value at Risk properties.
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From Excess Return to P&L Distribution Like high-yield spreads, one-
year (risk-free, i.e. government bond) yields are known at simulation date.
So, we can simply define the vector of simulated losses

L = �
⇣

Y

(PF ) + r

riskfree
⌘

·NAV

as the sum of portfolio xR

NAV and (global average) one-year risk-free rate
multiplied by the negative of portfolio NAV at analysis date. Since the cal-
culation is done this easily, we decide to just consider the vector of portfolio
xR

NAV ’s Y

(PF ) in the remainder of the paper, which is better suited for
comparisons with historical simulation results.

5 Results, Applications, Examples

With complete Monte Carlo and historical simulation models on hand, the
time has come to apply both R prototypes. In Section 5.1 the model results
of MC and historical simulation approach are contrasted and in Section 5.2
MC model outcomes are confronted with Solvency II standard formula fig-
ures. Both comparisons are done on the basis of the ten fund test portfolio
introduced in Section 4.2.3. In Section 5.3 diversification effects resulting
from increasing PCF portfolio sizes are demonstrated briefly and in Section
5.4 the improved accuracy of MC simulations with increasing iteration counts
is evaluated.

5.1 Monte Carlo vs. Historical Simulation

Comparing Monte Carlo and historical simulation results presumes uncon-
ditional MC sampling with respect to high-yield spreads.

Unconditional Ten Fund Test Portfolio Results

In order to replicate the unconditional ten fund test portfolio xR

NAV distri-
bution, we generate

• 25,000 MC simulated portfolios each for three different residual subsets
with exact model specification:

– X-generation: 1,000 macro conditions x 25 error draws per condi-
tion, R-vine factor dependencies, log-normally distributed high-
yield spreads (–> unconditional simulation),
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– �-estimation: quarterly random AMT-index �-model-sampling,
MM-estimated �-coefficients,

– ✏-modeling: direct ✏-sampling from top 80%, top 40% and 20-60%
NAV partitions, and

• 12,500 historical (simulation) draws

to obtain four empirical distribution functions of xR

NAV ’s, which bottom
quantiles are summarized in the following table:

Quantile (in %) min
Q Q Q Q Q Q Q

mean
0.5 1 2 5 10 25 50

Historical -56% -37% -32% -27% -20% -12% 3% 13% 16.2%

MC (top 80) -126% -39% -32% -26% -18% -12% -2.1% 8.0% 9.2%

MC (top 40) -93% -33% -28% -23% -16% -9.8% -1.0% 8.4% 9.4%

MC (20-60) -105% -39% -33% -28% -19% -13% -2.4% 8.6% 10.2%

So, the Solvency II relevant 99.5% xR

NAV -at-Risks for the historical,
MC with top 80% NAV errors, MC with top 40% NAV errors, and MC with
20-60% quantile NAV errors simulations are -37%, -39%, -33%, and -39%
respectively50. The lower quantiles generally exhibit similar values for all
four approaches, although MC and historical minimum observations differ
substantially. The historical median value is 4-5% greater than the MC
figures and the mean lies 6-7% higher for the historical simulation. The
mean/median differences may be explained with atypically high historical
VC observations during the millennium internet boom/bubble and the fact
that historical simulation results can differ substantially with respect to the
sampled AMT portfolio structure. To be concrete, the historically drawn
portfolios (probably) overrepresent BO and VC funds as compared to the ten
fund test portfolio. A comprehensive distributional comparison is preferably
achieved via density plots and rugs like in Figure 13, where the uncondi-
tional MC51 vs. historical simulation of the ten fund test portfolio subset is
exemplarily visualized. There the dashed vertical lines (on the left) indicate
the corresponding empirical 0.5%-quantiles and the vertical solid lines (in
the kernel density centers) display the sample mean values. The gray lines
represent the density and 0.5%-quantile obtained from an MC simulation
without error sampling, but with bias correction; thus they can be regarded

50 The corresponding Conditional xRNAV @Risks are -44.0%, -49.4%, -46%, and -49.7%.
51 Monte Carlo errors are here directly sample from the top 80% NAV subset of linear

model residuals.
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Fig. 13: Unconditional MC vs. historical simulation

as constituting the systematic (undiversifiable) risk of the particular PCF
portfolio.

Pros and Cons

Despite the (naive) historical simulation model’s parsimony and conceptually
plainness, its biggest limitation is a fundamental rigidness, which manifests
itself in inadequate fund/portfolio similarities and the omitted processing
of conditional (public market) information. In contrast, the MC model’s
flexibility originates from the modular design, which allows incorporating
many different methodologies to optimally decompose the return distribution
replication problem. However, too much latitude may sometimes tempt MC
risk engineers to shoot over the top.

In summary, Table 9 suggests supporting [Ale08]’s notion of preferring
MC over historical simulation methods: “Given the substantial limitations, it
is difficult to understand why so many banks favor historical VaR over Monte
Carlo VaR models. [...] In my view, the great advantage of Monte Carlo
simulation is that it uses historical data more intelligently than standard
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Simulation Monte Carlo Historical
Pro + conditional

+ modular design (enables
problem decomposition)
+ customer can specify
certain modules with own
expectations
+ flexible (e.g. for scenario
analysis)
+ NAV weighting

+ parsimonious
+ conceptually fast & easy
implementation
+ dependencies implicit in
historical data

Contra - more model risk
- long(er) R code
- conceptually (&
computationally) expensive

- more estimation risk
- slow(er) R code
- unconditional
- commitment weighting
- no AMT similarity
- problematic for very large
portfolios

Problems a) NAV-heteroscedasticity
(one-dimensional)
b) time-regime-pattern

a) fund-similarity
(high-dimensional)
b) time-regime-pattern

Tab. 9: MC vs. historical simulation: Pro & Cons



5 Results, Applications, Examples 70

historical simulation does” (see [Ale08], Volume 4, pp. 142-143).
The main advantage of the MC method in our context is that the tough-

est MC issue comprises of one-dimensional NAV-heteroscedasticity, however,
in the historical simulation approach, the intricate fund-similarity problem
is of higher dimensionality. As a consequence, we are able to resolve NAV-
heteroscedasticity quite satisfactorily, while the question of fund-similarity
stays intractable. Just a vast amount of supplementary PCF data may ease
the fund-similarity issue in historical PCF simulations since here the histor-
ical data is used less intelligently than in Monte Carlo approaches.

5.2 Monte Carlo vs. Standard Formula (Solv. II)

Comparing Monte Carlo VaR and the corresponding Solvency II standard
formula figure presumes conditional high-yield spread MC sampling.

Conditional Ten Fund Test Portfolio Results

In order to replicate the conditional ten fund test portfolio xR

NAV distribu-
tion, we generate

• 100,000 MC simulated portfolio xR

NAV ’s each with exact model spec-
ification:

– X-generation: 2,000 macro conditions x 50 error draws per condi-
tion, R-vine factor dependencies, deterministic high-yield spreads
(–> conditional simulation),

– �-estimation: quarterly random AMT-index �-model-sampling,
MM-estimated �-coefficients,

– ✏-modeling: direct ✏-sampling from top 80%, top 40% and 20-60%
NAV partitions.

For that reason we use high-yield spreads (6.40%) and (one-year) treasury
yield curve rates (0.53%) as of 11th May 201652. The translation of xRNAV ’s
to NAV-Returns is easily done by adding the risk-free rate, which yields
empirical RNAV 0.5%-quantiles of

• �0.403 + 0.0053 = �39.77% with ✏-sampling from 20-60%-quantile
NAV partition,

52 Note, that NAVs are stale between end of quarter dates.
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Fig. 14: Conditional MC simulation for distinct ✏-sampling proposals

• �0.286 + 0.0053 = �28.07% with ✏-sampling from top 40% NAV par-
tition,

• �0.380 + 0.0053 = �37.47% with ✏-sampling from top 80% NAV par-
tition.

The Solvency Capital Requirement is then simply obtained by multiplying
with minus 1 (times NAV).

Figure 14 illustrates the distributional differences caused by different
error-sampling schemes incorporated in a conditional MC simulation. The
dashed vertical lines represent 0.5%-quantiles and the solid lines the corre-
sponding mean values.

Solvency II Standard Formula Results

The application of a look-through approach53 is definitely one of the guiding
principles in the Solvency II framework, whenever feasible. Though, ac-

53 When deploying the look-through approach, AMT fund types have to be ascribed to
distinct market risk sub-models in the Solvency II standard formula:
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cording to Commission Delegated Regulation (EU) 2015/35 Article 168 (6)
“closed-ended and unleveraged alternative investment funds [...] shall in any
case be considered as type 1 [equities]”. So the benchmark for our MC model
is a Solvency Capital Requirement, corresponding to a 99.5% VaR, of 39%
plus a symmetric adjustment54 of

0.5 ·
✓

46.12� 43.85

43.85
� 0.08

◆

= �0.0141 = �1.41%

which we calculate using an exchange traded fund replicating the MSCI
World total return index55. Therefore, the Solvency II standard formula
quantifies the SCR with 37.59% for PCFs.

So in our case, the most conservative conditional MC SCR figure (39.77%)
is slightly above the standard formula SCR benchmark. The MC model with
✏-sampling from top 80% NAV-subset yields however virtually the same value
(37.47%). This proximity might suggest a reasonable MC model calibration
with the full top 80% NAV-subset, even though the (nearly) exact match in
our example is particular a product of pure chance56. Generally, it is not
straightforward to predict for which PCF portfolio compositions the SCR
obtained by MC simulations will lie above/below the standard formula fig-
ure. But, since our estimated �-factor loadings are fairly small, MC model
outcomes for highly-diversified PCF portfolios should come below the stan-
dard formula SCR. Moreover, do highly-diversified portfolios (particularly in
the fund-vintage dimension) suggest direct ✏-sampling from the “gentle” top
40% NAV subset.

In conclusion, this naive example seems to confirm private equity’s sub-
sumption to Type 1 equities in the Solvency II standard formula; in some
preliminary Solvency II drafts, private equity was regarded as Type 2 equity
with 49% SCR.

• BO, VC, FoF, and Commodities are assigned to the Equity risk sub-module
• DD is assigned to the Spread and Interest risk sub-modules
• RE is assigned to the Property risk sub-module
• Infra is assigned to the Equity risk sub-module (infrastructure carve-out)
• MEZZ is partially assigned to Equity, Spread and Interest risk sub-modules

54 The formula for the symmetric adjustment of the equity capital charge is outlined
in Article 172 of Commission Delegated Regulation (EU) 2015/35. Per construction, the
symmetric adjustment works tendentially in the opposite direction than the conditional
high-yield spread factor in our factor models.

55 db X-trackers MSCI World TRN Index UCITS ETF (XMWD) in US-Dollar. (URL:
https://www.quandl.com/data/GOOG/LON_XMWD)

56 Confer MC accuracy results in Section 5.4.
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Fig. 15: Conditional MC simulation of various-sized BO portfolios

5.3 Diversification Effects

In order to demonstrate MC model diversification effects (by means of homo-
AMT portfolios with different component counts to segregate the dispersion
impact), we generate

• 100,000 MC simulated portfolio xR

NAV ’s each with exact model spec-
ification:

– X-generation: 2,000 macro conditions x 50 error draws per condi-
tion, R-vine factor dependencies, deterministic high-yield spreads
(–> conditional simulation),

– �-estimation: quarterly random AMT-index �-model-sampling,
MM-estimated �-coefficients,

– ✏-modeling: direct ✏-sampling from top 80% NAV subset, for port-
folios consisting of

⇤ 1 Buy Out fund,
⇤ 10 Buy Out funds,
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⇤ 25 Buy Out funds.

Here, we again use public market data as of 11th May 2016 to induce con-
ditional MC results. The vertical dashed lines in Figure 15, representing
sample 0.5%-quantiles

⇣

F̂

Y(PF )

k

⌘�1

↵=0.5%
, expose the anticipated diversifica-

tion benefits in a very obvious way. On the one hand, there is a big margin
between the one-BO-fund portfolio and the 10/25-BO-funds portfolios and,
on the other hand, the gap, i.e. the diversification benefit, between 10 and
25-BO-fund portfolio is relatively narrow.

5.4 Monte Carlo Model Accuracy

Finally, we employ resampling techniques, actually re-run the model several
times, to evaluate the precision (convergence properties) of MC simulation
outcomes more closely. Once again, the ten fund test portfolio is selected
for the analysis. In order to replicate two conditional ten fund test portfolio
xR

NAV distributions, we generate

• 10,000 MC simulated portfolio xR

NAV ’s (200 macro conditions x 50
error draws per condition), and

• 100,000 MC simulated portfolio xR

NAV ’s (2,000 macro conditions x 50
error draws per condition); with otherwise equal model specifications:

– X-generation: R-vine factor dependencies, deterministic high-
yield spreads –> conditional simulation (as of 11th May 2016),

– �-estimation: quarterly random AMT-index �-model-sampling,
MM-estimated �-coefficients,

– ✏-modeling: direct ✏-sampling from top 80% NAV partition.

For the accuracy assessment of 0.5% quantiles
⇣

F̂

Y(PF )

k

⌘�1

↵=0.5%
of the re-

sulting two conditional ten fund test portfolio xR

NAV distributions, we
repeatedly run the MC simulations for a 100 times57. Consequently, we
are able to determine two empirical c.d.f.’s for the quantities of interest
⇣

F̂

Y(PF )

k=10,000

⌘�1

↵=0.5%
and

⇣

F̂

Y(PF )

k=100,000

⌘�1

↵=0.5%
. The result of our “naive jack-

knife” is visualized in Figure 16. Here all mean and medians values (vertical
lines) center around �34%, whereas the dispersion for the 10,000 return MC
simulation is considerably higher than for the 100,000 example.

57 The 100 MC simulation re-runs took 36 minutes for the 10,000 and 508 minutes for
the 100,000 case.
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Fig. 16: Empirical c.d.f. of xRNAV 0.5%-quantiles

In real-life cases of application, it is straightforward to determine confi-
dence intervals directly from the appropriate empirical c.d.f. to e.g. com-
municate MC model accuracy (in the sense of convergence properties) to
potential customers. Unfortunately, some time-consuming re-run procedure,
which can be regarded as the prerequisite for jackknifing, has to be per-
formed for each new PCF portfolio all over again, since previous accuracy
assessments are (maybe not impractical but surely) not reusable for new
portfolio compositions. So learning over time, MC model operators should
ideally establish a “feel-good” setting of simulation iterations (for a desired
accuracy level), in order to make the protracted model re-runs expendable.

The xR

NAV 0.5%-quantile evolution over time (actually with increasing
MC sample sizes), illustrated in Figure 17, might additionally help to get an
impression about the MC model’s convergence properties. Here 2,000,000
conditional MC portfolio xR

NAV ’s (20,000 macro conditions x 100 error
draws per condition) are simulated for the ten fund test portfolio (with equal
model specifications as before) After almost 10 hours of computations in
R, this length 2,000,000 vector is used successively to estimate empirical
0.5%-quantiles with gradually extending subsets of the total vector, which
displays the evolution to more accurate, i.e. less volatile, estimates the
larger the subsets become. The 0.5%-quantile for the total vector is �33.4%,
which is the terminal value of the red and green 0.5%-quantile course lines
in Figure 17. When applying forward versus backward extension of total
vector subsets, slightly different (mirror-symmetric) paths can be observed.
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Fig. 17: Empirical 0.5%-quantile evolution of xRNAV ’s

A natural accuracy assessment procedure is to repeatedly permute the total
vector and analyze the associated volatilities for small sample sizes to (re)use
the available data vector more subtly than in the approaches above58.

Cross-Validation In the AMT-factor-modeling section, only about 2/3 of
the available Preqin single fund data is used (as the training set for sin-
gle fund modeling). The (randomly) omitted 1/3 data subset (the test set)
can be utilized to review the linear factor models on single fund level and
the error models with respect to out-of-sample errors59. Though, for the
index factor models the full data set is employed to construct the AMT-
indices. Naturally, distinct index-building approaches can be implemented,
e.g. fund-size weighting instead of equal commitment-weighting, to revise
the AMT-factor-models relying on index data (and to obtain new �-models
for bagging as a pleasant side effect). Next, a “leave-X-funds-out” cross-
validation procedure of index results may be adopted; the aim of creating
“leave-X-funds-out” AMT-indices is again however rather the generation of
new, equivalent “sample-able” �-models (and associated residuals) in the
Monte Carlo context, than the out-of-bag/sample error assessment, which
could (just theoretically) be of interest on �-model level. General, the vali-

58 In principle, this is jackknifing (deterministic permutations) or bootstrapping (random
permutations). Note, that jackknifing in contrast to bootstrapping assures reproducibility.

59 In the R code, we additionally implement a function to generate bootstrap samples
of single fund data.
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dation of sub-models is not of primary concern as their stand-alone perfor-
mance is vacuous for the comprehensive MC model performance. On the
other hand, backtests of the (comprehensive) MC model are virtually im-
possible due to the scarcity of historical PCF data.

6 Conclusion

This paper develops and analyzes private capital fund risk models, which
shall be capable of estimating 99.5% Value-at-Risks over a one-year horizon
(as regulated in the Solvency II legislation).

Performance Measure The first step towards (strictly position-based) PCF
risk models with a one-year horizon is investigating the measurement of in-
termediate fund performance given the illiquid and stale nature of PCFs.
Therefore we (have to) use the concept of net asset value returns (RNAV )
that incorporates intermediate NAV figures into the return calculation. De-
spite the NAV’s dubious reputation, the derived xR

NAV performance mea-
sure can be shown to be the most natural and reasonable dependent variable,
especially in the Solvency II context. As the xR

NAV measure is compara-
tively well-behaved for one-year horizons, it could be of scientific interest,
if NAV returns continue to be tractable (e.g. in regression analysis) when
using just quarterly horizons.

AMT-factor-models Once the dependent variable is defined, individual
linear multi-factor-models for decomposing xR

NAV ’s are developed for eight
distinct fund types. Here standard, time-series OLS regression methods are
not feasible without major adjustments. In order to facilitate the regres-
sion problem, we separate �-factor estimation from ✏-modeling to achieve
an as accurate as possible return decomposition. Several proposals for �-
estimation are presented in our paper, which differ with respect to their
distinct data editing or estimation methodologies. Our favored �-estimation
approach resorts on self-constructed AMT indices starting at four different
quarters (for AMTs: BO, VC, FOF, DD, RE); to aggregate the resulting
four different factor loadings, the method of Index Quagging (quarterly ag-
gregating) is introduced. As ✏-modeling of single fund residuals fails with
simple parametric approaches, the most promising approaches are (a) direct,
empirical ✏-sampling, and (b) using finite mixture distribution models, which
are a convenient means to nicely reveal latent PCF return characteristics.
Generalizing multi-factor model results, we can retain, that (a) the public
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market return �-factors are relatively small, (b) the high-yield spread �-
factors are surprisingly big (and highly explanatory), (c) the liquidity factor
of [PS03, FNP12] is only significant using single fund data in regressions,
and (d) the idiosyncratic error terms are across-the-board quite high and
wild. Since most economic publications examining private equity/capital
risk and return report remarkably higher public market return �-factors (yet
for other performance measures), the topic remains a natural candidate for
further research60. On the other hand, the much-quoted NAV staleness is
also apparent in our analysis as the phenomena induces the significant high-
yield spread factor loadings, which is possibly an even better way to tackle
the staleness problem than the [Dim79] approach. Concluding the multi-
factor modeling section, we have to admit, that we are looking forward to
seeing applications of our approach in other settings (e.g. adapted for dy-
namic models with just quarterly horizons).

Historical and Monte Carlo Simulation To finally replicate PCF portfo-
lio xR

NAV ’s, we suggest a naive historical simulation method, which un-
fortunately can not convince due to its unconditional rigidness and its in-
tractable fund similarity problem. Nevertheless, the historical simulation’s
rough estimates may convey a “good first impression” of PCF portfolio re-
turns, as all sampled returns were actually historically feasible. In contrast,
the Monte Carlo simulation approach, which draws on the pre-developed
AMT-factor-models, overcomes all conceptional issues (like most prominent
NAV-heteroscedasticity) reasonably well and consequently generates quite
satisfactory quantile estimates via the generalized inverse of the simulated,
empirical c.d.f. of xRNAV ’s. As there exist several equivalent �-estimation
(e.g. OLS vs. MM-estimation, index data vs. single fund data, quagging
coefficients vs. 4 quarterly coefficients) and ✏-modeling (e.g. empirical sam-
pling, mixture distributions) approaches, the idea of randomly sampling out
of the repertory/ensemble of �- and ✏-models in MC simulations seems natu-
ral; the �-model sampling idea corresponds to bagging in an MC simulation
context. The missing part of our MC model (Y = �X+ ✏), i.e. the vector
of simulated macro-conditions X, is obtained via pair-copulae construction
methods, which is - although conceptually challenging - easily done by R’s
“VineCopula” package.

Once again, we may highlight, that the general fund similarity problem
is the most severe and ambiguous conceptual challenge in either simulation

60 See [Buc14] for an up-to-date study about “The Alpha and Beta of Private Equity
Investments” including further references.
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method; it is caused by the static model setups both times. Applications of
the MC model indicate with respect to the Solvency II framework, that stan-
dard formula and MC model figures of 99.5% Value-at-Risks lie pretty much
inside the same range for our ten fund test portfolio. For more diversified
portfolios the Solvency Capital Requirement (SCR) figure obtained by MC
simulations may come below the standard formula value; whereby extreme
macroeconomic conditions may reverse this statement as MC’s high-yield
spread factor and standard formula’s symmetric adjustment go in the op-
posite direction. Generally, we apply our MC model in this paper just for
illustrative purposes; there are manifold model capabilities (by using other
model parameterizations) not employed throughout the sample applications,
which can be used to study the xR

NAV distributions for various PCF port-
folio compositions in much greater detail. One obvious, interesting field of
further research is the MC model’s utilization in order to determine optimal
PCF-type portfolio allocations under e.g. Value-at-Risk constraints.

Bottom Line Since private capital funds implement dynamic trading strate-
gies (with mainly untraded assets), the development of a static one-period
risk model is naturally associated with some challenges. Dynamic modeling
in a multi-period setting seems more appropriate. However, in the Solvency
II context, the one-year horizon is mandatory, which makes the static fo-
cus on a four-quarter horizon eligible, as here unimportant and unnecessary
dimensions are simply dropped to concentrate on the essential. So we can
conclude, that this �-bagging-Monte-Carlo-model tailored for the simulation
of one-year PCF portfolio returns is truly neat and operational.

Divide et impera
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A Additional PCF Performance Measures

Modified Internal Rate of Return (M.IRR) To overcome the computa-
tional ambiguity and the economical misapplication of IRRs, a modified
approach was introduced by [Lin76]:

1+M.IRRtN =

✓

FVtN (D, rinv)

PVtN (C, rfin)

◆1/tN

=

 

PN
i=0

�

Dti · (1 + rinv)
tN�ti

�

PN
i=0

�

Cti · (1 + rfin)
�ti
�

!1/tN

Here the future value of all distributions up to time tN has to be calcu-
lated with a pre-determined re-investment rate rinv and the present value of
all contributions up to time tN is computed with a pre-determined finance
rate rfin. Clearly, the additional assumptions regarding re-investment and
finance rate make the M.IRR performance measure less parsimonious than
the primal IRR.
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Alternative NAV Returns Some industry practitioners may prefer a more
conservative NAV return version called R

EvB:

1 +R

EvB
tn =

NAVtn +
Pn

i=n�4q+1dDti

NAVtn�4q +
Pn

i=n�4q+1dCti

More accurate return figures can be obtained with the formulas proposed by
[Die66]. The “Modified Dietz” formula is recommended in the EVAC Risk
Measurement Guidelines from January 201361:

R

MD
tn =

NAVtn �NAVtn�4q +
Pn

i=n�4q+1d (Dti � Cti)

NAVtn�4q +
Pn

i=n�4q+1d (Cti �Dti) · tn�ti
tn�tn�4q+1d

(23)

This method was developed to evaluate portfolio performance in the pres-
ence of external in- and out-flows. In some cases a simplified version of
Eq. (23) yield similar results. In the “Simple Dietz” method the stringent
time-weighting of cash flows is abandoned:

R

SD
tn =

NAVtn �NAVtn�4q +
Pn

i=n�4q+1d (Dti � Cti)

NAVtn�4q + 0.5 ·
Pn

i=n�4q+1d (Cti �Dti)
(24)

The return calculation with Eq. (24) is based on the assumption that all
distributions and contributions occur at the half-way point in time within
the return period (or are distributed uniformly across the period, and so the
cash flows occur on average in the middle of the period).

But in the risk modeling context the more aggressive/volatile “standard”
R

NAV formula from Eq. (4) may be most appropriate. Another point for
that very formula is the nice transition/approximation property between Eq.
(4) and the so-called Horizon IRR.

Horizon Internal Rate of Return (H.IRR) The Horizon IRR approaches
makes the IRR calculation viable for intermediate horizons - e.g. one year
for our purposes - during a fund’s lifetime. Consequently Eq. (3) becomes:

�NAVtx +

x+h�1d
X

i=x+1d

Dti � Cti

(1 + IRRtx,th)
ti�tx

+
NAVtx+h

(1 + IRRtx,th)
tx+h�th

= 0 (25)

61 URL: http://www.investeurope.eu/media/10083/ evca-Risk-Measurement-
Guidelines-January-2013.pdf
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Here the net asset value at period start NAVtx serves as first out-flow, which
may be interpreted as fictional purchasing price of the fund or first investment
cash flow, and the net asset value at horizon end NAVtx+h

is considered as
the final in-flow or divestment cash flow. This method is especially flexible as
it allows to compute backward Horizon IRRs for x = 0 and forward Horizon
IRRs for x+ h = N .

If we use aggregated cash flow data on a quarterly basis, H.IRR deter-
mination corresponds to solving the following equation for r:

0 = �NAVtx +
4NCFtx+1q ,tx

(1 + r)1q
+

4NCFtx+2q ,tx+1q

(1 + r)2q
+

+
4NCFtx+3q ,tx+2q

(1 + r)3q
+

4NCFtx+4q ,tx+3q +NAVtx+4q

(1 + r)4q

= �NAV0 +
4NCFQ1

(1 + r)1q
+

4NCFQ2

(1 + r)2q
+

4NCFQ3

(1 + r)3q
+

+
4NCFQ4 +NAVQ4

(1 + r)4q

(26)

The simplified version of Eq. (26) can be further approximated for yearly
cash flows or respectively yearly discounting:

0 =
4NCFQ1 +4NCFQ2 +4NCFQ3 +4NCFQ4 +NAVQ4

(1 + r)4q
�NAV0

(27)

Now the conjunction of H.IRR and R

NAV gets obvious as Eq. (27) is exactly
a transformed version of Eq. (4). So for relatively short horizons H.IRR may
be approximated by R

NAV ; but, clearly, the longer the horizons the more
the returns obtained by Eq. (25) and Eq. (4) can deviate and the H.IRR is
to be preferred, as it submits a more accurate measure of performance.

B Accounting for Non-normality and Heteroscedasticity

In the PCF context, heavily non-normal regression residuals are likely to be
constant companions. These non-normal residual distributions may come
along with or even directly result from issues related to heteroscedastic-
ity (with respect to NAV, time, etc.). Fortunately, there are several valid
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remedies to account for (severe) violations of the normality and i.i.d.62 as-
sumptions of errors ✏:

1. Transformations to make Y more normal distribution like (in a
bijective manner):

(a) Logarithmic transformation using the natural logarithm of the
dependent variable. Applying this method can be regarded as af-
fective behavior among econometricians when they are confronted
with positively skewed data. In prosaic terminology, the log-
transformation is just a special case of a Box-Cox transformation.

(b) Box-Cox power transformation introduced by [BC64]:

Y

(�)
i =

(

(Yi)
��1
� if � 6= 0

log Yi if � = 0

The biggest limitation of this popular approach is the non-negativity
constraint on the variable to be transformed.

(c) Lambert Way to Gaussianize data described by [Goe15], on
the other hand, has no difficulties with negative values. Thus,
it is the most versatile transformation method, mentioned here.
Yet, transformations generally contain two major disadvantages,
which both concern the back-transformation to the “original, non-
normal world/scale”. Firstly, the values obtained by applying the
back-transformation may be unrealistically extreme (at the tails).
This would be a severe problem in Monte Carlo simulations of
Conditional Value at Risks. Secondly, the beta factors, i.e. re-
gression coefficients, lose their “straightforward” interpretability,
as the economic concepts of idiosyncratic and systematic risk get
mixed up or become inseparable in the latent, normally trans-
formed world as a collateral damage.

2. Robust Regression analysis is a potent way to reveal difficulties in
classical OLS regressions, as robust statistical procedures are by design
robust to violations of its assumptions; i.e. these methods generate re-
liable estimates even when the assumptions of the statistical model
are not exactly, but approximately true. If there are substantial dif-
ferences between OLS and robust regression results, then the validity

62 Respectively: uncorrelated with expectation zero and homoscedastic with finite vari-
ance.
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of the least squares approach have to be questioned63. Since there are
no outliers in the normal world of OLS (per definition/assumption)
robust methods are a mandatory choice for detecting “wild shots” in
regressions with non-normal data. “In all these problems [where fitting
is essential in identifying “wild shots”], resistant techniques seem es-
sential, if a good job of identifying "wild shots" is to be possible“ (see
[Tuk75] p. 18). So robust (regression) approaches are not capable of
modeling/explaining all (typical and atypical) observations, but they
provide - in contrast to OLS - a comparative good fit to the bulk of
the data, if the data contains (a few) atypical observations, which is,
as mentioned above, mandatory to recognize outliers as such. Clas-
sical OLS regression may be regarded as over-fitting in the presence
of non-normal data, as the estimated �-coefficients force the residuals’
mean to zero. On the other hand, robust regression approaches do
not aim at zero mean residuals and, thus, may generate linear-biased
estimators of the conditional mean, i.e. E (Y) 6= X

ˆ

�. This is true for
linear models with intercept and a non-symmetric residual distribu-
tion, since “then the intercept is asymptotically biased, but the slope
estimates are nonetheless consistent.” (see [MMY06] p. 100)64.

3. Tailored Regression for peculiar residual distributions, if the dis-
tribution is “too non-normal” for standard robust methods, i.e. the
distribution exhibits too many deviations to justify even an approxi-
mative normality assumption for the bulk/core/center of the observed
residuals (see: contamination breakdown point in the robust regres-
sion context, cf. [MMY06] p. 58). Especially in the presence of skewed
data, [MMT09] recommend an alternative robust regression approach
in the context of Capital-Asset-Pricing-Model (CAPM) applications
using the skewed generalized t distribution family (SGT), mentioned
in Section 4.2.3. In our case the single factor model of [MMT09] has
to be extended to our multiple factor setting.

4. Weighted Regression is applicable, if we possess a reasonable method
to detect uncertain/dubious observations, which need not be outliers

63 Hence, [Tuk75] emphasizes the importance of deploying supplementary robust analysis
concurrent to classical methods: “[Good statistical practice] means that any analysis based
upon arithmetic means, moments, least squares, to name a few standard cases, needs to
be at least accompanied by a resistant/robust analysis if an appropriate one can be found”
(see [Tuk75] p. 3).

64 The R package “robustbase” contains robust regression methods including model selec-
tion and multivariate statistics where the authors strive to cover the content of [MMY06].
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(or tail observations) in any case. After detection, uncertain observa-
tions are, consequently, attached with smaller weights than other more
reliable data points65. The key to this approach is thus obviously the
classification method for and the definition of uncertain observations
within Y. It is remarkable that in problems, where highly idiosyn-
cratic observations are characteristic, like in the PCF return context,
tail observations are neither outliers nor uncertain observations per
se. Thus, both outlier and uncertain observation detection optimally
should not be based on putative dependent variable peculiarities, which
is however not feasible in most cases (see textbook [Str11]). Robust
regression can be regarded as weighted regression, where putative out-
liers (tail observations) are weighted down to obtain more explanatory
beta coefficients for the non-outlier data points.

5. Remove outliers before running an OLS regression. [BKSW10] pro-
pose a linear multi-factor model for internal rate of returns (IRRs) of
individual venture capital investments. In their setting, they exclude
total losses and “outperformers” with IRRs above +99% from the anal-
ysis and, as a result, perform the OLS regression only on the remaining
“normal-performer-sample”. In the subsequent Monte Carlo simulation
of IRRs, the excluded positive and negative outliers are re-injected by
directly sampling from both omitted outlier sets. This approach can
be regarded as an extreme example of a weighted regression with bi-
nary weights, where all outliers, or more specifically tail observations,
are classified as uncertain data points. In this way, the procedure, at
worst, might have the opposite effect of what is intended by causing
additional bias with respect to the regression coefficients.

6. Diversified Portfolios should exhibit “more well-behaved” residu-
als, i.e. idiosyncratic returns. Therefore, simulating a more diversified
portfolio (with e.g. our historical simulation method) could in the best
case resolve all error distribution non-normalities. The construction
of PCF indices, which are theoretically maximum diversified, is finally
the logical continuation of this idea. Our design proposal is building
equal-commitment-weighted indices for our eight AMTs (like BO, VC,
RE, etc.) and possibly one (private capital) index composed of various
AMTs. However, the time-series of yearly index returns will be rather

65 Weighted least square regression, a special case of a weighted regression, is the ex-
tension of an OLS regression for applications with unequal variances of single ✏i’s (het-
eroscedasticity). There each observation gets rescaled with the corresponding residual
variance to run an OLS regression in the subsequent step (see [RPD98] pp. 413).
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short as a consequence of the lack of PCF data before 1990. Next, using
quarterly index returns to quadruple the number of data points is not
feasible since by construction of NAV returns yearly and quarterly re-
turns are not mutually convertible (in a multiplicative way). Moreover,
there is a general critique of the popular portfolio forming approach
in [ALS10] in the context of tests of econometric cross-sectional factor
models.

7. Non-Paramedic Regressions are designed to perform reasonably
well for (many) arbitrary error distributions, as they do not rely on
parametric models for the residual distribution. Non-parametric ap-
proaches may be the last resort when we finally can not overcome the
error distribution’s complexity and have to admit that we see no way
to capture the error distribution in parametric form. Sampling directly
from empirical residuals is thus ultima ratio.

8. Bagging or bootstrap aggregating is a machine learning technique
proposed by [Bre96] to improve the stability and accuracy of statis-
tical learning algorithms. Especially for models with high variance
and low bias, bagging predictors reduce variance and help to avoid
overfitting, as multiple model versions are created by making bootstrap
samples of the (learning) data set (see e.g. [HTF09] Chapter 8.7).
The resulting ensemble/repertory of models is then aggregated to one
model by averaging their outcomes/coefficients. So in cases, where no
persuasive single best model can be obtained, since multiple equivalent
models coexist, the application of sampling-based procedures may be
a legitimate means. A “real bagging approach” in our context is the
implementation of separate regressions on bootstrap samples (of single
fund data) and the aggregation of these model results in a subsequent
step.
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