REDUCED FORM PE-FUND ASSET MODELING CEQURA Conference 2018 Talk

Christian Tausch October 1, 2018

Agenda

- 1. Introduction
- 2. Probability Space
- 3. Structural vs. Reduced Form Approach (in the PE Context)
- 4. Exit Dynamics Regression
- 5. Data & Model Estimation
- 6. Monte Carlo Simulation
- 7. Conclusion

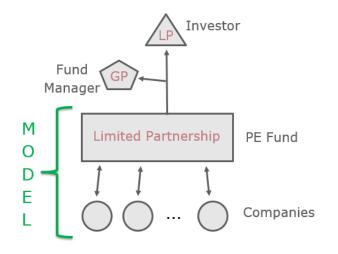
1 INTRODUCTION

Title Reduced form private equity fund asset modeling Status Working paper

Co-authors Axel Buchner, Georg Schlüchtermann

- Idea Use reduced form credit risk approach to model the exit behavior of private equity fund investments
- Aim Quantify the relationship between exit timing and exit performance on asset level

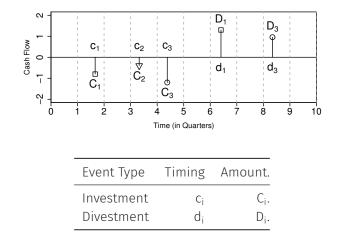
Application Monte Carlo simulation tool to estimate "Cash-Flow-at-Risks" of private equity portfolios


Assume:

- \cdot You hold a PE fund consisting of 3 (or 15) underlying companies.
- · The fund manager values your share to 1 million \in .
- · No secondary market for private equity exists.
- $\cdot\,$ You have to wait until the fund manager sells the companies.
- · Fund managers charge no fees.

How much money will you receive? When?

1.3 PRIVATE EQUITY FUND STRUCTURE


2 PROBABILITY SPACE

2.1 MARKED POINT PROCESS

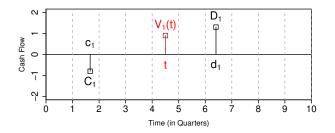
All fund cash flows are modeled by a marked point process (MPP)

$$(\mathcal{C}_i, \mathcal{D}_i) = (c_i, c_i, d_i, D_i)$$

Let $N^{(d)}(t)$ count all exit events happening before time t.

$$N^{(d)}(t) = \sum_{i=1}^{n} \mathbf{1}_{\{d_i \leq t\}}$$

In addition there exist 4 auxiliary processes:


Value process $V_i(t) = \mathring{V}_i(t) + v_{t,i}$ (proxy for true asset value \mathring{V}) Covariate process X_i (public market factors, company details) Censoring process $Z_i^{(censoring)}$ (indicates active investment) Filtering process $Z^{(filtering)}$ (due to quarterly reporting in PE)

3 STRUCTURAL VS REDUCED FORM

Definition 1: A private equity fund (PEF) model on asset level connects the intermediate proxy valuation process V_i(t) with the resulting final divestment cash flow \mathcal{D}_i for $t \in (c_i, d_i)$.

Remark The investment part C_i is ignored in our exit model.

Definition 2: A structural PEF model on asset level is defined in terms of the observable and unobservable firm value processes V and \mathring{V}

$$D = C + \int_{c}^{d} dV(s) = C + \int_{c}^{d} d\mathring{V}(s)$$

with

$$d = \inf \left\{ t > c : \ V\left(t\right) \in E\left(t\right) \right\} \land \inf \left\{ t > c : \ \mathring{V}\left(t\right) \le 0 \right\}$$

where E(t) is the dynamic exit acceptance set.

Most authors use structural approaches to model PE assets, but ...

🌋 Structural models require detailed information.

🏦 Incomplete information settings are inherent to private equity.

🌋 Scarce data: quarterly reporting, GP appraisals, stale pricing ...

Definition 3: A reduced form PEF model on asset level is defined in terms of the observable proxy value process V and a stochastic multiplier m_D that is modeled conditional on exit timing, i.e.

 $D = m_{D}\left(t \left| d \right.\right) \cdot V\left(t\right)$

with

$$d= \inf \left\{ t > c: \ N^{(d)}\left(t\right) > 0 \right\}$$

Reduced form = model based on observable quantities.
The exit timing d is determined by the exit counting process N^(d).
V(t) is not perceived as stochastic process, but realized data.

4 EXIT DYNAMICS REGRESSION

Marginal parametric models for the bivariate dependent variable:

$$\begin{array}{l} \mbox{Timing } y = d - t = m_y \left(X \left| \xi_y \right. \right) + e_y \\ \mbox{Multiple } Y = \frac{D}{V(t)} = m_Y \left(X \left| \xi_Y, y \right. \right) + e_Y \end{array}$$

where ξ_Y , ξ_y are the model parameters and e_Y , e_y are (possibly mutually dependent) error terms.

Multiple is modeled conditional on Timing.

Parametric models are more easy to estimate and simulate.

Intensity based approach

$$\mathbb{E}\left[\int_{0}^{\infty}dN_{i}^{\left(d\right)}\left(u\right)\right]=\mathbb{E}\left[\int_{0}^{\infty}h_{i}\left(\left.u\right|X\left(u\right)\right)du\right]$$

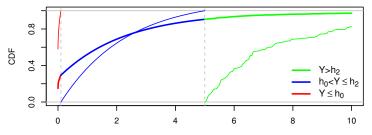
Multiplicative hazard formulation (a.k.a. Cox Regression)

$$h_{i}(t|X(t)) = h_{0}(t) \exp(\beta X(t)) Z_{i}^{(censoring)}(t)$$

Parametric Weibull base hazard

$$H_{0}^{(\mathrm{wb})}\left(t\left|\xi_{y}\right.\right)=\int_{0}^{t}h_{0}^{(\mathrm{wb})}\left(u\left|\xi_{y}\right.\right)du=\left(\frac{t}{\mathrm{scale_{wb}}}\right)^{\mathrm{shape_{wb}}}$$

M Stepwise integration of H^(wb) due to time-varying covariates.



4.3 MULTIPLE REGRESSION

Private equity multiples are option-like, i.e. many defaults and some very high returns (25% defaults and 10% with return > 400%) Normal and log-normal assumption not valid for $Y = \frac{D}{V(t)}$

💡 Truncation: exclude negative and positive outliers

Use three part hurdle model (use empirical CDF in outlier region, Gamma distribution in-between)

5 data & model estimation

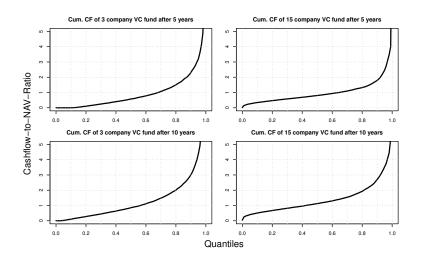
- $\cdot\,$ Asset level data set of 144 Buy Out and 98 Venture Capital funds
- Both models (Timing & Multiple) are fitted by maximizing the parametric likelihood functions
- · Exit Multiple model considerations:
 - · Data subset:
 - · Exit event before 2017-01-01 (realized investments)
 - · Entry event before 2010-01-01 ("quick-flip bias")
 - RVPI-ratio > 10% (economic relevance)
 - Resampling based estimation approach to account for auto-correlation of quarterly reported net asset values (i.e. sample one observation per company ID in each iteration)

	Variable name	Timing	Multiple
X ₁	Holding period: t — c	no	yes
X ₂	Time to exit: $d - t$	no	yes (as $x_2 + x_3$)
X ₃	Zombie stage: $\max(0, d - c - 10)$	no	yes (as $x_2 + x_3$)
X4	RVPI: $\frac{V}{C}$	no (internal)	yes
X_5	High yield spread	yes	yes
X ₆	Public equity performance	yes	yes
X ₇	Fund age at entry (date)	yes	no

Regression results seem plausible:

- $\cdot\,$ PE-funds exit their companies the faster:
 - $\cdot\,$ the higher the public equity return,
 - \cdot the lower the high yield spreads,
 - $\cdot\,$ the older the fund age.
- $\cdot\,$ High Multiples can be expected for:
 - · high public equity returns,
 - \cdot low high yield spreads,
 - $\cdot\,$ short (future) time-to-exit's.
- \cdot Long (past) holding periods decrease the probability of default.
- · The lower the RVPI ratio $(\frac{V}{C})$, the higher the Multiple variance.

6 MONTE CARLO SIMULATION


Compare two Venture Capital funds with 3 and 15 company holdings:

- All companies are already held 5 years and have an RVPI (current value to cost ratio) of 1
- · 5,000 simulation iterations
- · Fees are not considered
- $\cdot\,$ Public market scenarios are generated by historical simulation

Which fund is riskier?

How much money can you expect after 5 or 10 years (from now)?

Cash-Flow-at-Risk	3-company	15-company		
"10% worst case after 5 years"				
5-year horizon, 10% quantile	0.00	0.34		
"10% best case after 10 years"				
10-year horizon, 90% quantile	3.01	2.69		

Cash-Flow-at-Risk: Maximum amount of cumulative divestment cash flow you can you expect after a given horizon with a given probability (in relation to the current valuation).

7 CONCLUSION

Our paper:

- 1. contributes a **marked point process** framework to describe the cash flow dynamics of private equity funds on single asset level.
- 2. studies the **divestment behavior** of private equity funds in a reduced form approach, where the exit multiple is modeled conditional on exit timing.
- 3. proposes tailored **parametric regression** models, which can include covariates that are infeasible in fund level approaches.
- 4. highlights the superiority of **reduced form** formulations in incomplete information settings like private equity.

General Aim: Model for (d, D) given V(t) and (c, C).

	Structural	Reduced-form
Stochastic Processes: - observable - unobservable	V(t) V(t), E(t)	N ^(d) (t)
Simulation Procedure: 1. Step 2. Step	Multiple paths for V(t) and V(t) Timing check when E(t) is met	Timing d directly from survival function Multiple m _D (t d) · V(t)

Working paper and R code are available on my blog Quant-Unit.com

DO YOU HAVE COMMENTS?

.

