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Risk perception in private equity is notoriously difficult, as the cash flow patterns associated
with private capital funds are not well understood on underlying asset level. To account
for the incomplete information setting induced by the infrequent and imperfect valuation
practice of privately held assets, this paper proposes the first reduced form model tailored
for private equity fund investments. Especially their realized exit cash flows are analyzed
in a joint modeling framework that describes both the exit timing and exit performance on
individual deal level. The corresponding linear parametric models are estimated by means
of maximum likelihood for a buy out and venture capital data set and are applied within
a Monte Carlo simulation example to emphasize the superiority of our approach in the risk
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1. Introduction

Financial assets with a cumulative valuation of $2.83 trillion are controlled by private
equity funds (as of June 2017; Source: Preqin). Fund investors naturally ask (i) what will
happen with these assets in the future or, on a small scale, (ii) what is the economic hazard
associated with a particular private equity fund stake? Fundamentally (iii) how much cash
will be realized and (iv) when? These questions arise because a Private Equity Fund (PEF)
is generically constructed as limited partnership with bounded lifetime that is not traded
on public markets1. The fund manager receives an unfunded upfront commitment from
fund investors and then controls the timing of all discretionary investment and divestment
cash flows. From the fund investors’ perspective these cash flows can be considered as the
outcome of exogenous random variables.

This article follows the perception that the illiquid character of PEF investments requires
tailored risk measurement methodologies, preferably on underlying asset level to insure the
inclusion of company level information, vital in undiversified settings. However, little is
known about the dynamic behavior of single private equity fund investments. Especially the
interaction between holding period and total return, that ultimately determines the cash
flows to investors, are not well grasped yet. The empirical and theoretical private equity
literature lacks comprehensive concepts on asset level that jointly describe both (i) the fund
manager’s endogenous timing of cash flows and (ii) the risk and return of the underlying fund
holdings. These highly related aspects are unfortunately often studied in rather isolated and
fragmented approaches.

To better understand the exit behavior of private equity fund investments on portfolio
company level, we establish the reduced form approach to PEF asset modeling. It is derived
in a continuous-time framework by exploiting analogies to credit risk models in incomplete
information settings [2]. Since reduced form formulations avoid to model unobservable
quantities, our model exclusively describes all cash flow events associated with a given
private equity fund by a marked point process. The benchmark approach of Platen [3] can
be applied to price these payment streams under the real world measure. Consistent with
our reduced form perspective, we analyze the exit dynamics of PEF investments, i.e. the
connection between (i) exit timing and (ii) return of underlying fund assets, by two marginal
statistical models that are linked by a copula. Additionally the exit performance model is
conditioned on exit timing. The exit timing regression is based on a parametric multiplicative
hazard rate formulation adapted for time-variant covariates. The return multiple regression
employs the so called two-part or hurdle modeling idea to account for the zero-heavy nature
of historically observed PEF asset returns.

The access to a proprietary asset level data set of Buy Out (BO) and Venture Capital
(VC) fund investments allows the empirical application of our modeling idea. In the first
step, the aforementioned exit timing and return multiple regression models are estimated
by maximum likelihood for both data sets. Here the asset level granularity permits the
inclusion of many covariates that are not available in fund level regressions. This paper

1Kaplan and Strömberg [1] describe the nature and economics of PEFs in more detail.

2



focuses on public market (equity returns and corporate high yield spreads) and timing
related (holding period, time to exit, etc.) independent variables. In the second step, the
estimated parametric models are applied in a Monte Carlo simulation example that, with
its undiversified PEF portfolio setting, reveals the advantages of asset level over fund level
cash flow risk simulation approaches.

The article is organized as follows: Section 2 reviews related literature. Section 3 in-
troduces the new reduced form modeling framework for private equity fund assets. Section
4 presents a joint parametric exit timing and exit return multiple model that can be esti-
mated by maximum likelihood. Section 5 reports the empirical results of these regression
approaches for a BO and VC data set. Section 6 discusses a risk management application
of the model estimates in a Monte Carlo simulation example. Section 7 finally concludes.

2. Related literature

2.1. Empirical private equity analyses

Published empirical analyses on deal level focus either on the exit route or on the asset
performance of private equity investments. By contrast joint empirical analyses of both
aspects merely exist as unpublished working papers [4, 5].

The realized exit routes of VC fund investments (e.g. initial public offering, trade sale,
liquidation) are analyzed by Giot and Schwienbacher [6] and Félix et al. [7] by means of
competing risk models. Jenkinson and Sousa [8] employ a multiplicative hazard model and
a trinomial logistic regression for a BO data set. Cumming [9] and Schmidt et al. [10] use
multinomial logit models in similar VC and BO studies. Cumming et al. [11] survey the
firm level exit performance of governmental and independent VC investments in Europe. In
all exit route regressions just static, i.e. time-invariant, covariates are incorporated.

The return and risk of VC companies is studied by Cochrane [12] and Korteweg and
Sorensen [13]. They develop sample selection correction methodologies that allow the cal-
culation of the amended return of VC investments from observed financing round valuation
data. Both approaches are based on log-normally distributed returns. The value creation of
BO firms is examined by Guo et al. [14] and Valkama et al. [15]. Here the return drivers of
BO investments are identified in detailed deal level regressions.

2.2. Stochastic private equity models

The first private equity fund level model that primarily relies on Gaussian stochastic
processes is introduced by de Malherbe [16]. Buchner [17] utilizes a similar framework to
distinguish between fund level (i) market, (ii) liquidity, and (iii) cash flow risk. Buchner
et al. [18] propose a stochastic model on the typical cash flow dynamics of private equity
funds that solely relies on observable cash flow data. Conclusive from a diversified portfolio
perspective, these approaches inherently neglect any asset level information.

Further there exist some structural asset level models that are designed to address con-
crete private equity related questions. Bongaerts and Charlier [19] estimate the capital
requirements for private equity investments under Basel II. Braun et al. [20] quantify the
risk appetite of BO fund managers. Escobar et al. [21] examine the portfolio optimization
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problem for private equity investors. Dong et al. [22] assess the credit risk associated with
a portfolio of private infrastructure projects. Lahmann et al. [23] focus on the stepwise
debt reduction associated with BO investments. Each paper deals with private equity spe-
cific issues, however the general structural (default) framework applied therein is explicitly
developed rather for public debt than private equity.

3. General framework

This paper aims to establish and estimate a suitable stochastic model for the exit cash
flows of private equity fund investments. Section 3.1 introduces the generic probability
space and describes the information flow to fund investors. In section 3.2 generic stochastic
processes are utilized to generally elaborate the distinction between structural and reduced
form approach in the private equity context. Section 3.3 sketches PEF pricing.

3.1. Generic probability space

Let (Ω,G ,P) be a filtered probability space (satisfying the usual hypotheses) with the
sample space Ω, G a σ-algebra of subsets of Ω, and the real world probability measure P.
To model the incomplete information setting of a typical private equity fund investor, we
introduce the smaller investor filtration (Ft)t∈[0,T ∗] with Ft ⊂ Gt,∀t ∈ [0, T ∗]. We use the
notation F = FT ∗ and G = GT ∗ .

Investors can observe three distinct types of cash flows associated with a generic fund
investment. Contribution cash flows C are spent by fund managers to buy new companies
and distribution cash flows D result when the corresponding companies are sold. Other cash
flows O, i.e. mainly fee payments, are ignored in the remainder, since they can be modeled
as deterministic functions of C and D. Funds invest in several companies and we assume for
simplicity that each investment i ∈ {1, 2, . . . , n} is characterized by one single entry event
Ci = (ci, Ci)i=1,...,n and one single exit event Di = (di, Di)i=1,...,n

2. The timing of investment
and divestment is given by ci and di, respectively, and the cash amounts associated with
investment and divestment are denoted by Ci and Di, respectively. As can be seen from
figure 1a, it holds ci < di, Ci > 0, Di ≥ 0 for all i = 1, 2, . . . , n.

More specifically, the timing of investment cash flows can be described by the univariate
counting process N (c) that is governed by a nonnegative G -progressively measurable intensity
process λ = {λt, t ≥ 0}. The exit timing is governed by an n-dimensional point process

N(d)(t), where each N
(d)
i (t) = 1{di≤t}~ei indicates if the ith company’s final divestment time

di has been exceeded before time t; with 1{} as indicator function and ~ei is the ith unit
vector. To assure ci < di we construct exit timing by di = ci + Ti where Ti is a positive
random variable. Appendix B outlines the F -adapted intensity based model for N

(d)
i (t).

Additionally, there exist two auxiliary information processes for each entered investment

Vi (t) = V̊i (t) + υt,i and Xi (t)

2Appendix A accounts for the more realistic case of multiple investments and divestments per company,
needed when the model is empirically applied in equation 7.
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Figure 1: (a) Visualization of fund cash flows (C,D). Three entry, but only two exit events are observed.
For the right-censored exit event (d2, D2) we know that d2 > 10.
(b) Private Equity Fund Asset Model: A PEF-AM connects V (t) with D = (d,D) for t ∈ [c, d[. There are
two general modeling approaches to this problem: structural and reduced form.

where Vi (t) is the (observable) proxy net asset value process and V̊i (t) is the (latent) true net
asset value process of the ith asset, both locally integrable and G -progressively measurable.
Thus fund mangers repeatedly report imperfect approximations of the true asset value that
result in untradeable proxy valuations. The valuation error random variable υt,i is left
unspecified for t ∈ ]ci, di[ and we further assume

Vi (ci) = Ci and Vi (di) = Di

The locally integrable multivariate covariate process Xi (t) contains e.g. supplementary
macro-economic, public market, fund level, or asset specific information.

Fund managers disclose informations regarding V (t) to their fund investors just on a
quarterly basis. Due to this reporting practice in the private equity industry, PEF data
on asset level is characterized by a longitudinal (or panel) data structure with synchronous
interval-censoring. This means we face a ‘doubly censored data structure’ in the sense of
Sun [24, 1.3.3], since entry and exit timings are both interval-censored

ci ∈
]
c

(L)
i , c

(R)
i

]
di ∈

]
d

(L)
i , d

(R)
i

]
For the ith asset let Aq,i resp. Bq,i (q = 1, . . . , Q) represent the quarter start resp. end
dates, i.e.

0 ≤ A1,i ≤ B1,i ≤ . . . ≤ AQ,i ≤ BQ,i ≤ T ∗

Thus, c
(L)
i and d

(L)
i are components of the vector of quarter start dates Ai = (Aq,i)q=1,...,Q

as c
(R)
i and d

(R)
i are components of the corresponding vector of end dates Bi = (Bq,i)q=1,...,Q.

Hence, we define the underlying censoring and filtering processes as

Z
(cens)
i (t) := 1{

t > c
(L)
i

}1{
t≤ d(R)

i

} (1)
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Z(filt) (t) := 1{t ∈ (A ∨B)} (2)

The investor filtration (Ft)t∈[0,T ∗] is thus generated by the self-exciting filtrations of the
respective (filtered) stochastic processes

Ft := N (c)
t ∨N (d)

t ∨ Vt ∨Xt ∨Z (cens)
t ∨Z (filt)

t

with
N (c)
t = σ

{
N (c)(s)Z(filt)(s) : 0 ≤ s ≤ t

}
N (d)
t = σ

{
N(d)(s)Z(filt)(s) : 0 ≤ s ≤ t

}
Vt = σ

{
V(s)Z(filt)(s) : 0 ≤ s ≤ t

}
Xt = σ {X(s) : 0 ≤ s ≤ t}
Z (cens)
t = σ

{
Z(cens)(s) : 0 ≤ s ≤ t

}
Z (filt)
t = σ

{
Z(filt)(s) : 0 ≤ s ≤ t

}
This means F -information allows us only to observe N (c)(t), N(d)(t), and V(t) on a quarterly
time grid. Therefore when working under filtration Ft we just regard times t ∈ (A ∨B).

3.2. Structural vs reduced form approach

The credit risk literature distinguishes between structural and reduced form modeling
approaches. Jarrow and Protter [25] outline their differences from an information based
perspective: ‘Structural models assume complete knowledge of a very detailed information
set, akin to that held by the firm’s managers. [...] In contrast, reduced form models as-
sume knowledge of a less detailed information set, akin to that observed by the market’. As
a consequence, reduced form model formulations naturally arise in some incomplete (par-
tial/imperfect/latent/noisy) information settings [2].

We suggest that reduced form models constitute at least a fruitful alternative to existing
structural PEF models (cf. section 2.2), since incomplete information settings can be as-
sumed characteristic for private equity investments. Generally reduced form models strive
to describe the data but not necessarily the underlying cause and effect phenomenon like
structural approaches. The reduced form approach to PEF asset modeling is introduced by
the following definitions, where we omit the index ‘i’ for better reading:

Definition 1. A Private Equity Fund Asset Model (PEF-AM) P connects the intermediate
proxy valuation V (t) with the resulting final divestment cash flow D for t ∈ [c, d[, i.e.

D = (d,D) := P (V (t), ...| C)

where P() is a two-dimensional function and C is assumed to be known for each entered
investment (cf. figure 1b).

Definition 2. A structural PEF-AM calculates the exit amount by the pathwise Stieltjes
integral over either the observable value process V or the unobservable value processes V̊

D
(1)
struc := V (t) +

∫ d
t

dV (s)

D
(2)
struc := V̊ (t) +

∫ d
t

dV̊ (s) (3)
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and the exit timing is defined as model based first hitting time

dstruc := inf {t > c : V (t) > E(t)} ∧ inf
{
t > c : V̊ (t) ≤ 0

}
∧ T ∗ (4)

with the G -progressively measurable dynamic exit acceptance process E(t).

Definition 3. A reduced form PEF-AM defines the exit amount in terms of the observable
proxy value process V and a stochastic multiplier mD that is modeled conditional on exit
timing information

D = mD (t |Fd ) · V (t) (5)

therefore the stochastic multiplier is defined as

mD (t |Fd ) :=
D

V (t)

The exit timing is determined in the reduced form approach by the point process N (d)

d := inf
{
t > c : N (d) (t) > 0

}
∧ T ∗ (6)

with conditional survival probability P [d > t |Ft ] = EP
[
1−N (d) (t) |Ft

]
.

In a realistic incomplete information setting, private equity investors can observe neither
V̊ nor E. Fund managers have to base their subjective exit decision E on the proxy value
process V , since they are possibly also unable to observe V̊ . Then fund mangers may be
even surprised by unexpected firm defaults, i.e. when the latent firm value process V̊ hits
zero. Due to this difficulties, existing structural PEF-AMs often regard exit timings as
exogenously fixed variables, e.g. by using hypothetical fund manager estimates or average
durations [19, 21]. From a mathematical viewpoint equations (3, 5, 6) can be calculated
with Fd information, but equation (4) describes a totally inaccessible stopping time under
F . If we assume F to constitute a reasonable filtration for a private equity investment
situation, reduced form formulations are to be favored over structural approaches (cf. table
1 for an overview). Consequently, definition 3 is used to model D and d in the remainder.

3.3. Real world pricing in the reduced form approach

If we assume our covariate process X(t) to contain (a proxy for) the growth optimal
numeraire portfolio S∗(t) in the sense of [26, 3], the F -fair company value/price V̇ is

V̇i(t) = S∗(t) · EP
[

Di

S∗(di)

∣∣∣∣Ft

]
= S∗(t)Vi(t) · EP

[
mD (t|Fdi)

S∗(di)

∣∣∣∣Ft

]
∀t ∈ (A ∨B)

In practice the expected value can be estimated by (Monte Carlo) simulation relying on a
suitable model for S∗(t) and D.

Using the benchmark approach in combination with the global filtration G yields

V̊i(t) = S∗(t) · EP

[
V̊i(u)

S∗(u)

∣∣∣∣∣Gt
]

= S∗(t) · EP
[

Di

S∗(di)

∣∣∣∣Gt]
for t < u < di. Especially the G -true value can be just observed at exit, i.e. V̊i(di) = Di.
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Table 1: Distinction between structural and reduced form approach with respect to the stochastic processes
that need to be specified for the exit behavior estimation. Unspecified stochastic processes can be perceived
as realized data for past times and unknown for future times.

Process Description Approach F -observable
structural reduced form (quarterly)

X(t) regression covariates known known yes
N (c)(t) counts entry events known known yes
N (d)(t) indicates exit events unspecified specified yes
Z(cens)(t) indicates censoring unspecified specified yes
Z(filt)(t) quarterly filtering unspecified specified yes
mD (t |Fd ) multiplier unspecified specified yes
V (t) proxy asset value specified unspecified yes

V̊ (t) true asset value specified unspecified no
E(t) exit decision set specified unspecified no

c entry timing via N (c)(t) via N (c)(t) -
C entry amount V (c) V (c) -
d exit timing equation (4) equation (6) -
D exit amount equation (3) equation (5) -

4. Parametric joint reduced form model

4.1. Marginal Multiple and Timing distributions

In accordance with the reduced form approach introduced by definition 3 we define the
exit Multiple variable as Y = D/V (t) and the exit Timing variable as y = d− t. Due to
the semicontinuous (zero-heavy) nature of the Multiple Y ∈ R≥0 we split the univariate
cumulative distribution function (CDF) and probability density function (PDF) into a point
mass at zero and an absolutely continuous part

FY (Ȳ ) = P
[

D
V (t)
≤ Ȳ |Ft

]
= π0(X) + (1− π0)GY

(
Ȳ |X, ξY

)
fY (Ȳ ) = δ

δȲ
FY (Ȳ ) = π0(X)1{Ȳ=0} + (1− π0)gY

(
Ȳ |X, ξY

)
where the default probability π0(X) is conditioned on some covariates X. GY and gY repre-
sent a continuous CDF and PDF, respectively, that are conditioned on vectors of covariates
X and parameters ξY . Further the Timing y ∈ R>0 is specified by the conditional survival
model

Sy (ȳ|t) = P [d > t+ ȳ|Ft] =
Sy (t+ ȳ|X, ξy)
Sy (t|X, ξy)

where Sy denotes an absolutely continuous survival function with covariate vector X and
parameter vector ξy. Due to interval censoring introduced by Ft the Timing density function
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is linearly approximated by rectangle probabilities

fy(ȳ|t) = Sy (ȳ|t)hy (t+ ȳ) ≈ Sy (ȳ −∆|t)− Sy (ȳ|t)
∆

where hy is the corresponding hazard function and ∆ = 0.25 for quarterly observations.

4.2. Bivariate copula model

We define the bivariate distribution in terms of the distribution function for Y and
survival function for y

FY y(Ȳ , ȳ|t) = P
[
D

V (t)
≤ Ȳ , d > t+ ȳ

∣∣∣∣ t,Ft

]
In a similar insurance setting Shi et al. [27] favor a parametric copula model over a straight-
forward conditional probability decomposition. However since reduced form explicitly mod-
els the Multiple conditional on Timing we combine both approaches. First we include
Timing in the predictor set d ∈ X for both complementary two-part models, π0 and GY , and
use Fd-information for all covariates X. Next we assume conditional independence between
these two models. Finally, if necessary, we define a parametric copula function Cop(u, v)
for the non-default part of the bivariate distribution, to model residual dependence between
Multiple and Timing not captured by the Multiple model covariates X. In this case
the CDF is constructed as

F0 := FY y(Ȳ , ȳ|t, Ȳ = 0) = 1− Sy (ȳ|t)
F1 := FY y(Ȳ , ȳ|t, Ȳ > 0) = Cop[GY (Ȳ ), Sy (ȳ|t)]
FY y := FY y(Ȳ , ȳ|t, Ȳ ≥ 0) = 1{Ȳ=0}F0π0 + 1{Ȳ >0}[π0 + (1− π0)F1]

and the corresponding PDF is given by

f0 := fY y(Ȳ , ȳ|t, Ȳ = 0) = fy(ȳ|t)π0

f1 := fY y(Ȳ , ȳ|t, Ȳ > 0) = gY (Ȳ ) · fy(ȳ|t) · cop[GY (Ȳ ), Sy (ȳ|t)]
fY y := fY y(Ȳ , ȳ|t, Ȳ ≥ 0) = 1{Ȳ=0}f0 + 1{Ȳ >0}f1

with copula function derivative

cop(u, v) =
δ2Cop(u, v)

δuδv

4.3. Model specification

For the exit Timing regression we apply Cox [28]’s multiplicative hazard modeling idea
to specify a parametric Weibull survival function. Our approach allows the integration of
exogenous, time-variant variables into the exit Timing regression, which is in contrast to
the analyses of Giot and Schwienbacher [6], Félix et al. [7], and Jenkinson and Sousa [8]
focusing on internal, time-invariant covariates to examine empirical exit routes in VC and
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BO. The survival model construction and associated likelihood function are described in
Appendix B.

According to our theoretical framework just one single distribution cash flow Di and one
single contribution cash flow Ci per asset is scheduled. However, in real data sets multiple
investment and divestment cash flows can be observed for a given company. To account for
this practical consideration, we redefine the multiple regression’s dependent variable as

Yi,t =
Ďi(t)

Vi(t) + Či(t)
≥ 0 (7)

According to equations (A.2) Či(t) resp. Ďi(t) represents the sum of all contribution resp.
distribution cash flows occurring after t. The corresponding marginal two-part model con-
sists of a logistic regression for π0 and a generalized linear model relying on a Gamma
distribution for GY , which are adopted from the R package GAMLSS introduced by [29].

To detect dependency between both marginal models a 180-degree rotated Joe copula is
tested

CopJoe(u, v; θ) = 1− [uθ + vθ − uθvθ]1/θ

with parameter θ ≥ 1.

5. Data & model estimation

5.1. Asset level data set

For the empirical application of the joint regression model we use asset level data (stem-
ming from a fund-of-fund program) split into a BO and a VC subset (cf. table 2). All
investments had been entered between 1998-09-30 and 2016-12-31. The underlying compa-
nies are clustered into 144 BO and 98 VC funds.

The multiple regression data set excludes all non exited observations and all companies
entered after 2009-12-31 in order to alleviate possible sample selection bias. Allowing exit
observations of recently entered companies (quick flips) to enter the Multiple analysis data
set, causes biased estimates, if there is a significant relation between exit timing and exit
performance. Yet exactly this presumed connection is one of the objects under investigation
in this paper.

The empirical distributions of both dependent variables are visualized in figure 2. For
both fund types, the maximum holding period is approximately 15 years and at least 10%
of the Multiple observations are exactly zero.

5.2. Explanatory variables

In both marginal regression models we focus on (i) public market and (ii) timing related
covariates. The common public market variables, shared by both marginal analyses, cover

10



Table 2: Descriptive statistics of the private equity data sets used for the Timing and Multiple regressions.

Timing data set BO VC

Censored events (exit date > 2016-12-31) 649 531
Observed events (exit date ≤ 2016-12-31) 1,542 2,536

Multiple data set BO VC

Realized exits (entry date ≤ 2009-12-31) 1,231 2,179
Thereof with unique company ID 1,108 1,836
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Figure 2: Empirical distribution functions of dependent variables: Kaplan-Meier estimate of the survival
function for the Timing variable in the left plot and empirical cumulative distribution function (ECDF) for
the entry-to-exit Multiple variable in the right plot.
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high yield spreads3 and public equity performance4. Additionally in the Multiple regres-
sion Fama and French [30] factors were tested, but only the Conservative-Minus-Aggressive
(CMA) investment factor turns out to be significant. The Timing regression is obviously
not capable of incorporating holding period (t − c) and time to exit (d − t) as indepen-
dent variables, since they are directly derived from the dependent variable. Instead the
fund age at entry date is used as the only time related Timing covariate. The asset level
Residual Value to Paid In (RVPI), defined as value proxy to cumulative contributions ratio
(R/V ), must be regarded as time-variant internal variable [31, section 6.3.2] and therefore
is excluded from the set of possible Timing predictors.

5.3. Estimation procedure

5.3.1. Timing

In the Timing regression all exited and right-censored observations are included. We
explicitly keep multiple entries for a company with numerous fund investors, since the entry
and exit timing is endogenously determined by each fund manager. Thus the estima-
tion procedure for the marginal Timing model, i.e. maximizing equation (B.3), is relatively
straightforward. However it is computationally more intensive than a parametric multiplica-
tive hazard rate regression with only time-invariant covariates since it involves the numerical
integration (stepwise approximation) over the hazard rate function in equation (B.4). The
numerical maximum likelihood optimization for our Cox Weibull model is performed in R
by the function optimx(... , method= ”nlminb”) from the optimx package.

5.3.2. Multiple

The estimation procedure for the marginal Multiple model is more intricate, since
we have to account for (i) the longitudinal data structure and (ii) economically negligible
observations. Here we propose a one-per-company resampling scheme to resolve the within
company autocorrelation of the dependent variable characteristic for panel data. In our
iterative procedure, in each step exactly one observation per company identifier is randomly
chosen to enter the likelihood optimization. This also resolves the issue when multiple funds
invest in the same company. However, observations with an RVPI of less than 10% are totally
excluded within the resampling algorithm, since they can be regarded economically irrelevant
in our opinion. We assume that these observations add more noise than information, as fund
managers seem to come up with sloppy firm valuation proxies in these situations. Certainly
this solution is just one possible RVPI related weighting method and could be replaced
by more elaborate approaches, e.g. weighting the likelihood function by the RVPI in the
optimization procedure. The choice of a resampling based estimation method is clearly
associated with high computational costs, but on the other hand enables the application of

3We use the BofA Merrill Lynch US High Yield Option-Adjusted Spread
(https://fred.stlouisfed.org/series/BAMLH0A0HYM2).

4In the Timing regression we incorporate monthly Public Equity Returns (i.e. Indext+1

Indext
− 1) and in the

Multiple regression we use same-horizon Public Equity Multiples (i.e. Indexd

Indext
) both calculated with the

MSCI World Total Return Index in US Dollar.
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a simple, yet informative marginal Multiple model and simultaneously provides resampling
based standard error estimates (free of charge). The generalized linear models for π0 and
GY are separately estimated by the functions gamlss(..., family = BI(mu.link = logit)) and
gamlss(..., family = GA)), resp., from the R package GAMLSS [29].

5.3.3. Copula

For the copula estimation we use the inference functions for margins approach of Joe
and Xu [32]. This means, first the marginal models are estimated from separately maxi-
mized univariate likelihoods, where survival models for Timing can incorporate non exited
investments in contrast to Multiple models. In a second step, the dependence parameter’s
significance is examined. The 180-degree rotated Joe copula derivative is obtained by the
function BiCopPDF(..., family = 16) from the R package VineCopula.

5.4. Parameter estimates

5.4.1. Timing

The coefficient estimates associated with the multiplicative hazard rate model from Ap-
pendix B explain the impact of (i) public equity returns, (ii) high yield spreads, and (iii)
the fund age at entry on the exit Timing of individual fund investments (cf. table 3).

Favorable public market conditions, i.e. high public equity returns and low high yield
spreads, and a high fund age at entry date result in faster exit Timings. The corresponding
Akaike Information Criterion (AIC)5 values indicate that the relative quality of Timing
models with covariates is superior to a Weibull distribution model without covariates for
both BO and VC data sets, since models with minimum AIC are to be preferred. For the
BO subset the minimum AIC model (a) contains all three covariates, but for the VC subset
the minimum AIC model (b) contains just public equity returns and the fund age at entry
as covariates.

In summary the public market related estimates indicate, that high yield spreads posses
more predictive power for the BO set and public equity returns posses more predictive power
for the VC set. The fund age at entry effect is highly significant for both fund types, however
the magnitude of this effect is stronger for the BO set.

5.4.2. Multiple

The coefficient estimates obtained from the two-part model introduced in section 4 ex-
plain the impact of (i) public market, (ii) private (proxy) valuation, and (iii) exit timing
related covariates on the exit Multiple of individual fund investments (cf. table 4).

Favorable public market conditions, i.e. now a high public equity multiple and a low
high yield spread, lead to high Multiple estimates in both sub models, since the signs of
the public equity multiple coefficients are positive and the signs of the high yield spread
coefficients are negative for π0 and µ(GY ), where π0 denotes the probability of default,

5The AIC is calculated as AIC = 2k − 2 ln
(
L̂
)

where k gives the number of parameters used in a given

regression and L̂ denotes the maximized likelihood value.
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Table 3: Parameter and coefficient estimates of the Timing regression. Three distinct set of covariates (a -
c) are tested for each fund type. The standard errors (in parentheses) are obtained from the corresponding
Hessian matrix.

Timing estimates Buy Out Venture Capital

Variables (a) (b) (c) (a) (b) (c)

Public equity return 1.892 2.478 - 5.201 5.169 -
(1.084) (0.959) - (0.756) (0.775) -

High yield spread -3.071 - -3.588 0.651 - -0.43
(1.076) - (1.051) (0.674) - (0.67)

Fund age (at entry) 0.086 0.088 0.085 0.036 0.036 0.037
(0.014) (0.014) (0.014) (0.01) (0.01) (0.01)

Scale (Weibull) 6.44 7.221 6.261 7.554 7.355 6.977
(0.308) (0.19) (0.285) (0.269) (0.165) (0.24)

Shape (Weibull) 1.651 1.654 1.652 1.474 1.474 1.482
(0.034) (0.034) (0.034) (0.269) (0.165) (0.24)

AIC (including covariates) 12,598 12,604 12,599 21,058 21,057 21,103
AIC (without covariates) 12,647 12,647 12,647 21,113 21,113 21,113

i.e. a zero multiple, and µ(GY ) represents the Gamma distribution mean. The significant
negative CMA factor coefficients indicate that this public portfolio could be potentially used
to partially hedge both BO and VC exposure. Unsurprisingly, low company valuation proxies
(in relation to the initial investment amount) increase the probability of default. Time
related covariates in the two-part model just influence the variance of GY , i.e. Var(GY ) =
σ(GY )2 · µ(GY )2. Lower past holding periods decrease σ(GY ), whereas high future time-to-
exits increase σ(GY ).

The AIC values for the zero and continuous part of the Multiple model indicate that the
relative quality of the full covariate regressions are superior to their corresponding intercept
only equivalents for both BO and VC data sets.

5.4.3. Copula

The 180-degree rotated Joe copula parameter estimates are 1.135 (0.018) for the BO
set and 1.101 (0.015) for the VC set. This means Multiple and Timing can be regarded
almost conditional independent, which would be the case for parameter estimate θ = 1.

6. Monte Carlo model on portfolio level

Our reduced form exit dynamics approach is suited for straightforward and computa-
tionally inexpensive cash flow simulations, which help to genuinely understand the risk of a
given static PEF portfolio, since the underlying framework is capable of processing detailed
asset level information. Here portfolio aggregation relies on conditional independence, i.e.
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Table 4: Parameter and coefficient estimates of the two-part Multiple regression, where the default prob-
ability π0 is estimated by a logit model and the Gamma distribution GY is specified by parameters µ, σ.
The resampling procedure is iterated 1,000 times for each fund type. The estimates are mean and standard
deviation (in parentheses) that are naturally estimated within the resampling based methodology.

Multiple estimates Buy Out Venture Capital

Covariates 1− π0 µ(GY ) σ(GY ) 1− π0 µ(GY ) σ(GY )

Intercept 1.720 0.674 -0.089 1.295 0.596 0.384
(0.156) (0.066) (0.034) (0.106) (0.101) (0.019)

Holding period 0.105 - -0.032 0.133 - -0.029
(0.034) - (0.013) (0.023) - (0.010)

Time to exit - - 0.086 - - 0.048
- - (0.009) - - (0.005)

RVPI - 1 0.790 - - 0.341 - -
(0.186) - - (0.074) - -

Public equity multiple - 1 1.305 0.499 - 0.869 0.524 -
(0.167) (0.107 ) - (0.098) (0.158) -

High yield spread -5.260 -3.101 - -6.264 -3.668 -
(2.113) (0.993) - (1.403) (1.787) -

CMA factor multiple - 1 -0.596 -0.676 - -0.545 -0.700 -
(0.344) (0.193) - (0.162) (0.239) -

Link function logit log log logit log log

Mean AIC (including covariates) 893 2,743 2,743 1,883 2,392 2,392
Mean AIC (intercept only) 938 2,885 2,885 1,959 2,499 2,499
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dependence between companies is solely introduced by common covariates X. Then liquidity
and cash flow risk at the α-level for a given fixed horizon z can be conveniently assessed by
a portfolio level Cash-Flow-at-Risk (CFaR) measure

CFaRα,z(PF) = inf {Yt ≥ 0 : FPF(Yt, z) > α}
FPF(Yt, z) = P

[
Yt ≤

∑n
i=1witYit1{yit≤z} | Ft

]
with portfolio weights wit by means of Monte Carlo simulation. Monte Carlo simulation
formally constitutes the application of the Multiple conditional on Timing model spec-
ified in section 4 with the parameter estimates from section 5 for each portfolio company.
Specifically our simulation procedure relies on inverse transform sampling, i.e.

Ỹ = G−1
Y

(
ŨGY

∣∣∣ξY , X̃, ỹ)1{Ũπ>π0(X̃)} + 0

ỹ = S−1
y

(
Sy (t) · Ũy

∣∣∣ξy, X̃)
where the tilde symbolizes the simulated nature of a given random variable. Possible future
covariate process paths X̃ can be held fixed or re-simulated in each iteration step. The default

random variable Ũπ is distributed uniformly i.i.d. and the bivariate uniforms
(
Ũy, ŨGY

)
are

generated from the 180-degree rotated Joe copula CopJoe.
Figure 3 shows a Monte Carlo example designed to emphasize the benefit of our (asset

level) reduced form approach in the risk management context. Here the cash flow profiles
of two VC funds with 3 and 15 companies in their portfolio are compared. The study uses
historical public market observations up to 2016-12-31, afterwards one hypothetical future
path is generated by sampling random permutations from the empirical data. Thus the
public market scenario is fixed throughout all iterations. Further all company ages are set
to five years and all RVPIs (i.e. V/C) are set to one for both funds, in order to focus on the
number of companies in the respective funds. Each run involves 5,000 iterations.

Basically the simulation result suggests that our model can capture large diversification
effects on asset level. Typical fund level models on the other hand cannot distinguish funds
from the same vintage year at all. Hence, the risk management for small PEF portfolio can
substantially benefit from the application of our asset level model instead of crude fund level
approaches.

7. Conclusion

Since private equity fund stakes cannot be traded on organized secondary markets, so-
phisticated cash flow projections are an expedient means to improve the risk understanding
of these vehicles. This paper generally contributes a marked point process based framework
to describe the inherent cash flow dynamics of private equity funds on single asset level.
Specifically the divestment behavior of PEFs is studied in a reduced form approach, that
naturally formulates the exit Multiple of a given fund investment conditionally on its exit
Timing. With regard to the associated parametric regressions, the asset level granularity
enables the inclusion of many insightful covariates, that are otherwise infeasible in pure fund
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Figure 3: Monte Carlo simulation example to compare the cash flows associated with generic 3 and 15
company VC funds.

level approaches due to identifiability issues. In our empirical analysis, public market and
time related predictors significantly affect both the deal level exit Timing and Multiple of
BO and VC investments. Realistic cash flow scenarios for a given static PEF portfolio can
be ultimately obtained by Monte Carlo simulations that draw on these model estimates.

The intrinsic risk of undiversified PEFs (with just a few company holdings) may be
commonly underestimated by models with implicit or explicit diversification assumptions.
Our asset level approach, on the other hand, is capable of reproducing the high default
probabilities empirically observed for single BO or VC investments. Innocent fund investors
may likely benefit from this enhanced risk perception, while confident fund managers may
hardly consent to these estimates in their subjective risk assessments.

In a next step it is natural to generally compare the reduced form and structural ap-
proach to PEF asset modeling. In our opinion the considerations of section 3.2 indicate
the superiority of reduced form formulations in incomplete information settings like private
equity. Here structural models always involve specifications of unobservable quantities like
true firm valuations or concepts hard to quantify at all like the hypothetical exit decision
process.

On a large scale, this paper takes a novel look on the cash flow stream that is expected to
be realized over the next years from the $2.83 trillion assets held by private equity funds (as
of June 2017; Source: Preqin). Perspectively, our marked point process framework can be
also used to model the contribution cash flows resulting form undrawn private equity fund
commitments, as there are $1.09 trillion of dry powder held by PEFs (as of March 2018;
Source: Preqin). Conveniently, even a comprehensive $3.92 trillion model can draw on our
net cash flow process from equation (A.1).
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Appendix A. More general marked point process model

Now we relax the restrictive assumption of just one investment and divestment cash flow
per given company. Inspired by the marked point process (MPP) construction of Biagini
and Zhang [33], we describe the ith company cash flows by a G -adapted marked point
process (τi,k,Ψi,k)k∈N>0 with two-dimensional marks Ψi,k = (Ai,k,Li,k). Here τi,k ∈ R>0 gives
the timing of the kth cash flow associated with the ith company, Ai,k ∈ R≥0 denotes the
corresponding cash amount, and Li,k ∈ {1, 2, 3} labels (1) contribution, (2) distribution, and
(3) other events.

The general net cash flow process on fund level is then defined as

NCFFund(t) :=

N(c)(t)∑
i=1

∞∑
k=1

1{τi,k>t}Ai,k (A.1)

Again the benchmark approach, sketched in section 3.3, can be applied to value (the payment
stream associated with) the current fund stake by means of the growth optimal portfolio S∗

V̇Fund(t) = S∗(t) · EP

N(c)(t)∑
i=1

∞∑
k=1

1{τi,k>t}
Ai,k

S∗(τi,k)

∣∣∣∣∣∣Gt


The simple cash flow model introduced in section 3.1 can be pathwise defined in terms of
the general MPP for t ∈ [ci, di]

či := inf [τi,k : Ψi,k ∈ B (R≥0, {1}) , k ∈ N>0] ∧ T ∗
ďi := sup [τi,k : Ψi,k ∈ B (R≥0, {2}) , k ∈ N>0] ∧ T ∗
ǒi := sup [τi,k : Ψi,k ∈ B (R≥0, {3}) , k ∈ N>0] ∧ T ∗
Či(t) :=

∑∞
k=1 1{τi,k>t}1{Ψi,k∈B(R≥0,{1})}Ai,k · (−1)

Ďi(t) :=
∑∞

k=1 1{τi,k>t}1{Ψi,k∈B(R≥0,{2})}Ai,k
Ǒi(t) :=

∑∞
k=1 1{τi,k>t}1{Ψi,k∈B(R≥0,{3})}Ai,k

(A.2)

which yields a reasonable conservative timing of cash flows suitable for risk management
purposes, if we assume equations (A.2) to be Ft-measurable for all t ∈ (A ∨B).

Appendix B. Timing: Parametric multiplicative hazard rate model

The Timing variable of interest is time to exit y = d − t. However, in agreement with
conventional survival analysis practice, the entire survival function S (t) = P [T > t |Ft ] is
estimated for each asset. This means, the total lifetime (holding period) of each company,
i.e. T = d− c, is used as dependent variable in the Timing model to base the analysis on a
common time scale.

Since N
(d)
i,j (t) is not Ft-observable for t /∈ (A ∨ B), we define the lagged exit timing

process N
(d∗)
i,j (t) by the lagged event time which corresponds to the right interval boundary

d∗i,j := inf
{
t > 0 : N

(d)
i,j (t) > 0

∣∣∣Ft

}
= d

(R)
i,j (B.1)
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Let this point process N
(d∗)
i,j (t) model the exit timing Ti,j of the ith company belonging to

the jth fund in line with the intensity based definition of Bremaud [34, II.3]

E
[∫ ∞

0

dN
(d∗)
i,j (u)

∣∣∣∣Ft

]
= E

[∫ ∞
0

hi,j (u|X (u)) du

∣∣∣∣Ft

]
The associated random intensity process is characterized according to [35]

hi,j (t |X (t)) = h0 (t)Z
(cens)
i,j (t) exp

(
β
′
X (t)

)
with the Ft-predictable censoring process Z

(cens)
i,j (t) from equation (1) and the Ft-predictable

covariate process X (t) both defined in section 3.1. Further, we assume Weibull distributed
exit Timings, i.e. a parametric model for the base hazard function h0 (t). The corresponding
Weibull cumulative hazard function is given by a simple closed form expression

H
(wb)
0 (t |ξy ) =

∫ t

0

h
(wb)
0 (u |ξy ) du =

(
t

scalewb

)shapewb

with parameter vector ξy = (shapewb, scalewb).
The survival function for a parametric Cox model with time-variant covariates is calcu-

lated by integrating over the multiplicative intensity process

SCox (t) = exp

(
−
∫ t

0

h0 (u |ξy )Z
(cens)
i,j (u) exp

(
β
′
X (u)

)
du

)
(B.2)

To account for the lagged definition of N
(d∗)
i,j (t) in equation (B.1), we apply the following

full likelihood approach to estimate the parametric Cox model with (i) time-variant co-
variates, (ii) an interval-censored data structure and (iii) possible final (i.e. nonrandom)
right-censoring

L (β, ξy |T,X) =
J∏
j=1

[
nj∏
i=1

{[
SCox

(
T

(L)
i,j

)
− SCox

(
T

(R)
i,j

)](1−Ri,j) [
SCox

(
T

(R)
i,j

)]Ri,j}]
(B.3)

where the left and right boundaries of the exit Timing interval are given by

T
(L)
i,j = d

(L)
i,j − c

(L)
i,j and T

(R)
i,j = min

(
fi,j, d

(R)
i,j

)
− c(L)

i,j

and the final observation time for a given asset is denoted by fi,j with corresponding right
censoring indicator

Ri,j = 1{
fi,j<d

(R)
i,j

}
This allows us to construct the adjusted likelihood for non-informative right-censoring [36,
section 5.1.2]. Here nj gives the number of investments for the jth fund and j = 1, 2, . . . , J
counts the number of distinct funds in the data set.

19



Further we assume a step function for the dynamic covariate process X (t) since we have
to integrate over the history of this process in the course of calculating the survival function.
In the maximum likelihood estimation procedure for the Cox model with a Weibull hazard
rate function we compute a quarterly time-discrete approximation of equation (B.2), i.e.

S
(wb)
Cox (t) = exp

−∑
q:tq≤t

exp
(
β
′
X (tq)

)∫ tq

tq−1

Z
(cens)
i,j (u)h

(wb)
0 (u |ξy ) du

 =

= exp

−∑
q:tq≤t

exp
(
β
′
X (tq)

)
Z

(cens)
i,j (tq)

[
H

(wb)
0 (tq |ξy )−H(wb)

0 (tq−1 |ξy )
]

(B.4)

with tq−1 ∈ A and tq ∈ B where q = 1, 2, . . . , Q. The covariate information X(tq) is here
assumed to be relevant for the time in between tq−1 and tq.
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