TOWARDS PUBLIC MARKET EQUIVALENCE

Public benchmarking for private equity

Christian Tausch July 9, 2019

AGENDA

Agenda

- 1. Introduction
- 2. Public Market Equivalent (PME) Approaches
- 3. Stochastic Discount Factor (SDF) for Private Equity
- 4. Data & Model Estimation
- 5. Conclusion

1 INTRODUCTION

1.1 EXECUTIVE SUMMARY

Title Towards Public Market Equivalence

Status Working paper (being planned)

Idea Compare and unify common Public Market Equivalent (PME) approaches from a (1) Stochastic Discount Factor (SDF) and (2) cash flow replication perspective.

Aim Quantify public market out/under-performance of private equity fund investments within a comprehensible and rigorous framework.

Application Create more tailored benchmarks.

1.2 PRIVATE EQUITY FUND CASH FLOWS AND VALUE

Private Equity Fund Dynamics

1.3 PUBLIC MARKET EQUIVALENT

Public Market Equivalent (PME)

- · Several competing methodologies to make private equity fund performance comparable to public equity.
- Benchmark private to public equity to determine ex-post best investment alternative.
- · Challenges for comparison:
 - · Closed-end private equity fund structure
 - No tradable market values for PE funds -> no return time-series like in public equity (stale pricing)
 - · Observed fund cash flows are only source of reliable hard data

1.4 TOTAL RETURN INDEX FOR PRIVATE EQUITY

How to convert a panel of cash flows into a total return index?

1.5 MATHEMATICAL NOTATION

Private equity fund i is characterized for discrete times t by:

Net Asset Value V_{i,t} (fund value proxy)

Contribution C_{i,t} (fund inflow from investors)

Distribution D_{i,t} (fund outflow to investors)

Public market is given by:

Asset $S_{i,t} \ge 0$ (price of non dividend paying asset)

SDF $\Psi_{0,t} > 0$ (stochastic discount factor from t to 0)

Numeraire $S_t^* > 0$ (default-free asset to serve as SDF)

Predictor $Z_{k,t}$ (macro indicator)

2 PME APPROACHES

2.1 PME: PRICING VS. REPLICATION

Pricing of observed fund cash flows:

- [Kaplan and Schoar, 2005]: discount all observed cash flows by numeraire S*.
- · [Korteweg and Nagel, 2016, Driessen et al., 2012]: discount all observed cash flows by more general SDF Ψ .

Replication of observed fund cash flows:

- [Long and Nickels, 1996]: match all in- and outflows, invest/finance residual value in/by public index.
- PME+: match all inflows and invest them in public market index, scale PME outflows by ex-post constant
- modified PME: match all inflows and invest them in public market index, scale PME outflows proportional to observed fund distribution ratio.
- Tausch (2019): base replication strategy on observed fund valuation (not observed cash flows).

2.2 PRICE & REPLICATION PROCESS

Price of fund i: discount all observed cash flows by SDF $\Psi > 0$:

$$\mathsf{P}_{\mathsf{0},\mathsf{T}_{\mathsf{i}}} = \sum_{\tau=1}^{\mathsf{T}_{\mathsf{i}}} (\mathsf{D}_{\tau} - \mathsf{C}_{\tau}) \cdot \Psi_{\mathsf{0},\tau}$$

with fund liquidation date T_i.

Price of replication strategy for fund i: discount all replication cash flows by same SDF $\Psi>0$:

$$\mathsf{R}_{\mathsf{0},\mathsf{T}_{\mathsf{i}}} = \sum_{ au=1}^{\mathsf{T}_{\mathsf{i}}} (\mathsf{A}_{ au} - \mathsf{B}_{ au} - \lambda_{ au}) \cdot \Psi_{\mathsf{0}, au}$$

with divestment $A \ge 0$, investment $B \ge 0$, cost $\lambda \ge 0$.

2.3 PRICING: SDF MODELS

Discount observed cash flows by numeraire portfolio [Long and Nickels, 1996], [Kaplan and Schoar, 2005], [Long, 2008]:

$$P_{0,t}^{(LN96)} = P_{0,t}^{(KS05)} = \sum_{\tau=1}^{t} (D_{\tau} - C_{\tau}) \cdot \frac{S_0^*}{S_{\tau}^*}$$

Discount observed cash flows by linear SDF [Driessen et al., 2012]:

$$P_{0,t}^{\text{(DLP12)}} = \sum_{\tau=1}^{t} (D_{\tau} - C_{\tau}) \cdot \prod_{h=0}^{\tau} \left[\frac{S_{h}^{\text{(rf)}}}{S_{h-1}^{\text{(rf)}}} + \alpha + \beta \left(\frac{S_{h}^{\text{(market)}}}{S_{h-1}^{\text{(market)}}} - \frac{S_{h}^{\text{(rf)}}}{S_{h-1}^{\text{(rf)}}} \right) \right]$$

Discount observed cash flows by exponential affine SDF (with m_d linear function of market factors) [Korteweg and Nagel, 2016]:

$$P_{0,t}^{(KN16)} = \sum_{\tau=1}^{t} (D_{\tau} - C_{\tau}) \cdot exp\left(-\sum_{d=0}^{\tau} m_{d}\right)$$

2.4 REPLICATION: PME+ AND MODIFIED PME

PME+ and modified PME both use observed fund contributions and invest them into public market. Replicated distributions need scaling.

PME+ unpredictable strategy, since Γ_T just known ex-post at time T:

$$R_{0,t}^{(PME+)} = \sum_{\tau=1}^{t} [\Gamma_{T} \cdot D_{\tau} - C_{\tau}] \cdot \Psi_{0,\tau}$$
 (1)

$$\Gamma_{T} = \frac{V_{T} + \sum_{\tau=1}^{T} C_{\tau} \frac{S_{T}}{S_{\tau}}}{\sum_{\tau=1}^{T} D_{\tau} \frac{S_{T}}{S_{\tau}}}$$
(2)

Modified PME predictable strategy with τ -information:

$$R_{0,t}^{(\text{mPME})} = \sum_{\tau=1}^{t} \left[\frac{D_{\tau}}{D_{\tau} + V_{\tau}} \cdot (\mathring{V}_{\tau-1} \cdot \frac{S_{\tau}}{S_{\tau-1}} + C_{\tau}) - C_{\tau} \right] \cdot \Psi_{0,\tau}$$
 (3)

$$\mathring{V}_{\tau} = \left(1 - \frac{D_{\tau}}{D_{\tau} + V_{\tau}}\right) \cdot \left(\mathring{V}_{\tau - 1} \cdot \frac{S_{\tau}}{S_{\tau - 1}} + C_{\tau}\right) \tag{4}$$

2.5 REPLICATION: VALUE-BASED HEDGING APPROACH

Value-based discounted replication cash flow (Tausch, 2019):

$$\mathsf{R}_{0,t}^{(\mathsf{T}19)} = \sum_{\tau=1}^{t} \beta \cdot \mathsf{Z}_{\tau-1} \cdot \mathsf{V}_{\tau-1} \cdot \left(\frac{\mathsf{S}_{\tau}^{(+)}}{\mathsf{S}_{\tau-1}^{(+)}} - \frac{\mathsf{S}_{\tau}^{(-)}}{\mathsf{S}_{\tau-1}^{(-)}} - \lambda \right) \cdot \frac{\mathsf{S}_{0}^{*}}{\mathsf{S}_{\tau}^{*}}$$

- In contrast to the other gain processes no knowledge of C_{τ} and D_{τ} is required \rightarrow just V_{τ} .
- · Mow to bound possible losses associated with this strategy?
- Further research: Possible to just use average fund information (typified pattern)? This means methodology that requires no information on actual C_{τ} , D_{τ} , and V_{τ} .

2.6 COMPARISON OF PME APPROACHES

Which PME approaches can be used for pricing/replication?

	Varia	ables r	needed	Suitable for							
Approach	$C_{ au}$	D_{τ}	$V_{ au}$	Pricing	Replication						
LN96	yes	yes	no	yes	no						
KS05	yes	yes	no	yes	no						
DLP12	yes	yes	no	yes	no						
KN16	yes	yes	no	yes	no						
PME+	yes	yes	no	no	no						
mPME	yes	yes	yes	no	yes						
T19	no	no	yes	no	yes						

3 SDF FOR PRIVATE EQUITY

3.1 STOCHASTIC DISCOUNT FACTOR (SDF) BASICS

- · SDF = arbitrage free model to price cash flows
- · Arbitrage free, if random variable $\Psi_{0,t}>0$
- · Use exponential affine SDF $\Psi_{0,t}^{(\mathrm{exp.aff})} = \exp(-\sum_{ au=1}^t \mathsf{m}_ au)$
- · Assume m_{τ} is **ergodic stationary** discrete-time random processes
- · One-period SDF is linear function $m_{\tau} = m_{\tau}(\alpha, \beta) = \alpha + \sum_{j} \beta_{j} F_{j,\tau}$ with (not necessarily tradeable) factors F_{j}
- · Moment condition idea to estimate α, β : $\mathsf{E}[\mathsf{P}] = \mathsf{E}[\sum_{\tau} \Psi_{\tau} \cdot (\mathsf{D}_{\tau} \mathsf{C}_{\tau})] = \mathsf{0},$ since we expect m_{τ} to correctly price all PE fund cash flows

3.2 PARAMETRIC VS. SEMIPARAMETRIC SDF MODEL

Competing models and estimation procedures for m_{τ} :

Semiparametric Generalized Method of Momemts (GMM):

- · Usually applied in SDF framework
- · Just requires partially specified model

Parametric Maximum Likelihood:

- · Think of m_{τ} as GLM or GAM, i.e., random variable with parameters of linear form $\mu_{m_{\tau}} = \alpha + \sum_{i} \beta_{i} F_{j,\tau}$
- · When m_{τ} normal distributed, SDF process is discrete-time GBM with time-varying mean (and possibly stdv)

Parametric Bayesian Markov Chain Monte Carlo:

- · Log-normal approach of [Ang et al., 2018]
- Does log-normal distribution fit well? Other distribution candidate with additive feature?

3.3 CURRENT "GMM" APPROACHES

[Driessen et al., 2012] linear SDF:

- · cross-sectional "GMM" approach with identity weighting matrix
- · cross-sectional unit: private vintage portfolio
- · estimate SDF on these private vintage portfolios
- \cdot $\stackrel{\text{\em }}{ riangle}$ asymptotics: let number of funds per portfolio $o \infty$
- moment conditions suffer from consistency issue, i.e., $\alpha \to \infty$ yields sample moment condition minimum.
- standard errors estimated by cross-sectional bootstrap: randomly select funds of a given vintage to form bootstrap vintage portfolios. Trequires assumption of cross-sectional independence of funds within a given vintage.
- authors just interested in coefficient estimates, if used to price
 PE cash flows -> "Private Market Equivalent"

3.3 CURRENT "GMM" APPROACHES

[Korteweg and Nagel, 2016] exponential affine SDF:

- · more 'traditional' cross-sectional "GMM" approach
- · cross-sectional unit: private equity fund
- average over cross-sectional units -> is just one PE-related 'time-series'
- · standard errors are estimated within spatial GMM framework
- estimate SDF on public replication portfolios and use this SDF to price PE fund cash flows -> (Generalized) Public Market Equivalent

3.4 NEW MOMENT CONDITION

SDF has to correctly price all horizons $0 \le h \le T_i$

GMM-like moment condition for fund (or vintage-portfolio) i and horizon h to specify SDF Ψ :

$$E\left[P_{h,T_i}\right]=0 \qquad \forall \quad i,h$$

with 'horizon' price (or pricing-error)

$$\mathsf{P}_{\mathsf{h},\mathsf{T}_{\mathsf{i}}} = \sum_{ au_{\mathsf{i}}=0}^{\mathsf{T}_{\mathsf{i}}} (\mathsf{D}_{ au_{\mathsf{i}}} - \mathsf{C}_{ au_{\mathsf{i}}}) \cdot rac{\psi_{0, au_{\mathsf{i}}}}{\psi_{0,\mathsf{h}}}$$

 $^{ ilde{m{\Delta}}}$ Negative relation between lpha and h, so we need optimal h.

Ph.T. is 'auto-correlated' in both dimensions i, h.

3.5 PRICING ERROR MATRIX (EXAMPLE)

i / h	0	1	2	3	4	5	6
2008	0.60	8.30	1.02	7.04	-7.41	2.74	-1.42
2009	9.22	-6.47	4.50	-0.40	4.77	7.58	-0.71
2010	0.86	-1.91	-4.09	-4.79	4.43	0.09	-5.87
2011	9.14	6.97	0.75	-3.48	-1.76	1.61	-5.09
2012	-8.03	-3.69	-3.06	0.65	6.10	-0.50	
2013	1.14	4.44	-2.63	1.67	-7.20		
2014	0.96	4.07	-3.36	3.38			
2015	-3.27	-4.85	-4.46				
2016	3.21	-4.37					
2017	-4.19						

 P_{h,T_i} -matrix for example data as of 2017.

3.6 METHODOLOGY: EXTREMUM ESTIMATOR

General extremum estimator methodology rather than classical GMM framework: $\hat{\alpha}, \hat{\beta} = \operatorname{argmin}_{\alpha, \beta \in \Theta} = \frac{1}{N \cdot (H+1) - \# \operatorname{na}} \sum_{i=1}^{N} \mathsf{L}_i(\alpha, \beta)$

Empirical loss function for fund/portfolio i

$$L_{i}(\alpha,\beta) = \sum_{h=0}^{H} \left[P_{h,T_{i}} \right]^{2}$$
 (5)

$$= \sum_{h=0}^{H} \left[\sum_{\tau_{i}=0}^{T_{i}} (D_{\tau_{i}} - C_{\tau_{i}}) \cdot \frac{\Psi_{0,\tau_{i}}}{\Psi_{0,h}} \right]^{2}$$
 (6)

$$= \sum_{h=0}^{H} \left[\sum_{\tau_{i}=0}^{T_{i}} (D_{\tau_{i}} - C_{\tau_{i}}) \cdot \exp\left(-\sum_{t=0}^{\tau_{i}} m_{t} + \sum_{t=0}^{h} m_{t}\right) \right]^{2}$$
 (7)

with $m_t = m_t(\alpha, \beta; F_t) = \alpha + \sum_i \beta_i F_{i,t}$

3.7 METHODOLOGY: GMM-LIKE

GMM-like estimator with identity weighting matrix:

$$\hat{\alpha}, \hat{\beta} = \operatorname{argmin}_{\alpha, \beta \in \Theta} = \frac{1}{H+1} \sum_{h=0}^{H} L_h(\alpha, \beta)$$

Empirical loss function for horizon h

$$L_{h}(\alpha, \beta) = \left[\frac{1}{N} \sum_{i=1}^{N} P_{h, T_{i}}\right]^{2}$$

$$= \left[\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{\tau_{i}=0}^{T_{i}} (D_{\tau_{i}} - C_{\tau_{i}}) \cdot \frac{\Psi_{0, \tau_{i}}}{\Psi_{0, h}}\right)\right]^{2}$$

$$= \left[\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{\tau_{i}=0}^{T_{i}} (D_{\tau_{i}} - C_{\tau_{i}}) \cdot \exp\left(-\sum_{t=0}^{\tau_{i}} m_{t} + \sum_{t=0}^{h} m_{t}\right)\right)\right]^{2}$$
(10)

with $m_t = m_t(\alpha, \beta; F_t) = \alpha + \sum_j \beta_j F_{j,t}$

3.8 REGULARIZATION

Penalized empirical loss function

$$L_{h}(\alpha,\beta) = \left[\frac{1}{N}\sum_{i=1}^{N}P_{h,T_{i}}\right]^{2} + \pi_{1}\sum_{j}\left|\beta_{j}\right| + \pi_{2}\sum_{j}\left(\beta_{j}\right)^{2}$$

- · Lasso: L₁ regularization (variable selection)
- · Ridge: L₂ regularization (coefficient shrinkage)
- · Elastic-net: combine L₁ and L₂ regularization
- · include α in penalty functions?

3.9 CONSISTENCY, ASYMPTOTICS

Asymptotics for vintage year portfolios:

- · Fix h, let number of cross-sectional units $i \to \infty$
- Consistency: e.g., convergence in squared mean implies convergence in probability: $E(|\theta \theta_0|^2) \rightarrow 0$ with $\theta = \alpha, \beta$
- · Law of large numbers: average \rightarrow expectation
- · Central limit theorem: $(\theta \theta_0) \cdot C \rightarrow N(0, \Sigma)$ [White, 2000, p. 131]
- · Show P_i is stationary process (\triangle how for function of θ ?)
- \cdot Show P_i is strong mixing process (asymptotic independence, which is stronger than ergodicity for stationary processes [White, 2000, p. 48])
- · Do we need to specify data-generating process?

4 DATA & MODEL ESTIMATION

AssetMetrix

4.1 DATA & MODEL ESTIMATION

Apply GMM-like methodology to:

- · Preqin cash flow data set as of May 2019
- · Use fund data in period 1986-2017Q4
- · 'Cross-sectional' unit i: vintage year portfolio, i.e., pool all fund cash flows and valuations of a given vintage into one portfolio (fund size weighted)
- · By fund types: buyout (BO), venture capital (VC), private debt (Debt), real assets (Real)
- Maximum horizon 12: h = 0, 1, 2, ..., 11, 12 (why not 10 or 15?)
- Maximum vintage 2010: i = 1986, ..., 2010 (why not 2005 or 2015?)

4.2 ENSEMBLE OF MODELS

Ensemble of models:

- · Use all log-linear Fama-French 5 factor model combinations $j \in \{Mkt-RF, HML, SMB, CMA, RMW\}$, yields $2^5 1 = 31$ models
- · $m_t = \alpha + F_{RF,t} + \sum_j \beta_j F_{j,t}$
- Coefficient estimates are very insignificant (also not clear how to correctly calculate coefficient variance matrix)
- Can we linearly combine an ensemble of weak learners to form a stronger one (like in boosting)? Model averaging vs. model selection.

4.3 ENSEMBLE OF 31 SDF MODELS: BO

4.3 ENSEMBLE OF 31 SDF MODELS: VC

4.3 ENSEMBLE OF 31 SDF MODELS: DEBT

4.3 ENSEMBLE OF 31 SDF MODELS: REAL

Real

4.3 ENSEMBLE OF 31 SDF MODELS: BO

Figure: Buy Out: several max. horizons

4.3 ENSEMBLE OF 31 SDF MODELS: VC

Figure: Venture Capital: several max. horizons

4.3 ENSEMBLE OF 31 SDF MODELS: DEBT

Figure: Private Debt: several max. horizons

4.3 ENSEMBLE OF 31 SDF MODELS: REAL

Figure: Real Assets: several max. horizons

4.4 CONSISTENT CROSS VALIDATION

Flastic Net

Compare block vs. leave-one-vintage-out (LOVO) cross validation:

- · cross validation for model selection and/or hyper parameter choice in elastic-net π_1 and π_2
- · v-block cross validation: consistency requires $n_v/n \rightarrow 1$
 - use large validation set compared to training set
 - at best use opposite of leave-one-out cross validation
- \cdot h-block cross validation: exclude n_h adjacent observations to alleviate time-dependency
- [Racine, 2000]'s hv-block framework does not include small-sample correction
- · Practical compromise: $n_v/n = 0.5$ and no h-blocking

4.5 BLOCK CROSS VALIDATION (EXAMPLE)

i / h	0	1	2	3	4	5	6
2008	0.60	8.30	1.02	7.04	-7.41	2.74	-1.42
2009	9.22	-6.47	4.50	-0.40	4.77	7.58	-0.71
2010	0.86	-1.91	-4.09	-4.79	4.43	0.09	-5.87
2011	9.14	6.97	0.75	-3.48	-1.76	1.61	-5.09
2012	-8.03	-3.69	-3.06	0.65	6.10	-0.50	
2013	1.14	4.44	-2.63	1.67	-7.20		
2014	0.96	4.07	-3.36	3.38			
2015	-3.27	-4.85	-4.46				
2016	3.21	-4.37					
2017	-4.19						

Data partitions used for training and validation (v-block). Data adjacent to training set is ignored (h-block).

4.6 ELASTIC NET, V-BLOCK CROSS-VALIDATION: BO

4.6 ELASTIC NET, V-BLOCK CROSS-VALIDATION: VC

4.6 ELASTIC NET, V-BLOCK CROSS-VALIDATION: DEBT

4.6 ELASTIC NET, V-BLOCK CROSS-VALIDATION: REAL

4.6 ELASTIC NET, LOVO CROSS-VALIDATION: BO

4.6 ELASTIC NET, LOVO CROSS-VALIDATION: VC

4.6 ELASTIC NET, LOVO CROSS-VALIDATION: DEBT

4.6 ELASTIC NET, LOVO CROSS-VALIDATION: REAL

5 CONCLUSION

5.1 SUMMARY & OUTLOOK

- 1. Public Market Equivalent: what do you want?
 - · Replication: investable, predictable strategy
 - · Pricing: arbitrage-free (positive) SDF model
- Very hard to establish sound econometric SDF approach for fund-level data and determine significance (time and cross-sectional dependence, non-liquidated funds, most reasonable pricing horizon, small data sample)
- 3. Horizon moment conditions potentially remedy DLP12's $\alpha \to \infty$ issue and KN16's under-specification issue
- 4. Extremum estimator vs. GMM-like method
- 5. Finsemble of models, model selection, cross-validation (elastic net vs. componentwise boosting)

References

Ang, A., Chen, B., Goetzmann, W. N., and Phalippou, L. (2018). Estimating private equity returns from limited partner cash flows.

Journal of Finance, 73(4):1751–1783.

Driessen, J., Lin, T.-C., and Phalippou, L. (2012).

A new method to estimate risk and return of nontraded assets from cash flows: the case of private equity.

Journal of Financial and Quantitative Analysis, 47(3):511–535.

Kaplan, S. and Schoar, A. (2005).

Private equity performance: Returns, persistence, and capital flows.

Journal of Finance, 60(4):1791–1823.

Korteweg, A. and Nagel, S. (2016).

Risk-adjusting the returns to venture capital.

Journal of Finance, 71(3):1437-1470.

Long, A. M. (2008).

The common mathematical foundation of acg's icm and aicm and the ks pme.

Alignment Capital Group, working paper.

Long, A. M. and Nickels, C. J. (1996).

A private investment benchmark.

The University of Texas System, working paper.

Racine, J. (2000).

Consistent cross-validatory model-selection for dependent data: hy-block cross-validation.

Journal of Econometrics, 99:39–61.

White, H. (2000).

Asymptotic theory for econometricians.

Academic press, second edition.

WORKING PAPER AND R CODE WILL BE AVAILABLE ON MY BLOG QUANT-UNIT.COM

•

Do you have comments?

