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of the LMU econometrics research seminar SS 2019 for helpful discussions and support.

Declaration of interest

The author reports no conflict of interest. The author alone is responsible for the content
and writing of the paper.

1



A spatial stochastic discount factor estimator for

private equity funds

Abstract

This paper proposes an improved stochastic discount factor estimation methodol-

ogy suited for fund-level cash flows of private equity funds. The asymptotic inference

framework for this semiparametric least-mean-distance estimator draws on a spatial

notion, i.e., the idea that the economic distance between distinct private equity funds

can be measured. The empirical and Monte Carlo simulation results reveal high esti-

mator variance for typical data sizes. Thus, we conjecture that naive semiparametric

M-estimators like ours shall be exclusively used for single-factor models until consid-

erably more vintage year information for private equity funds is available.

1 Introduction

Do investments in Private Equity (PE) funds offer abnormal returns to fund investors when

risk-adjusted for public market factors? Currently, a popular approach to answer this ques-

tion is to evaluate private equity fund cash flows by Stochastic Discount Factor (SDF) models

that draw on public market return covariates. The basic idea for SDF model estimation is

that the sum of all discounted fund net cash flows is expected to be zero when the true SDF

is applied. Unfortunately, there is no conclusion about the best methodology to estimate

these SDF models, as a variety of proposals coexists in the academic private equity fund

literature (Driessen et al., 2012; Buchner, 2014; Korteweg and Nagel, 2016; Ang et al., 2018;

Gredil et al., 2019).

This paper aims to revise and enhance existing semiparametric approaches. Especially

our conclusions from the insightful Driessen et al. (2012) and Korteweg and Nagel (2016)

articles lead us to suggest an improved least-mean-distance estimator for SDF models. It

can be applied to fund-level cash flow data of private equity funds. On the one hand, we
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provide asymptotic inference formulations that rely on the concept of spatial (near-epoch)

dependence between funds following the pioneering idea in Korteweg and Nagel (2016).

In this context, it is paramount to quantify the economic distance between funds by a

measure like absolute vintage year difference or cash flow overlap1. On the other hand, our

least-mean-distance estimator arguably generalizes the Driessen et al. (2012) methodology,

where we provide the asymptotic inference framework that was missing in the original paper.

Additionally, we propose a simple solution to the ’exploding alpha’ issue briefly mentioned

in their paper. Our Monte Carlo results suggest that the same modification dramatically

reduces the inherent bias associated with the original Driessen et al. (2012) estimator.

In the empirical application of our new estimator, we test simple linear and exponentially

affine SDF models that can draw on the five return factors associated with the q5 investment

factor model recently proposed by Hou et al. (2020). Based on a Spatial Heteroskedas-

ticity and Autocorrelation Consistent (SHAC) covariance matrix estimator, we calculate

asymptotic standard errors for the model coefficients. Moreover, we assess the small-sample

variance of coefficient estimates and the out-of-sample performance of the different SDF

models by hv-block cross-validation, which accounts for the inter-vintage-year dependence

of private equity funds (Racine, 2000). We test one- and two-factor models for the following

private equity fund types: Private Equity, Venture Capital, Private Debt, Real Estate, Nat-

ural Resources, and Infrastructure. All two-factor model results are rather devastating; not

more than the single-market-factor model results seem reasonable given the high estimator

variance.

The paper is structured as follows. Section 2 introduces our semiparametric least-mean-

distance estimator and its corresponding asymptotic inference framework. Section 3 applies

the method to estimate q5-investment-factor SDFs for various private equity fund types using

simulated and real-world cash flows. Section 4 concludes.

1However, this economic inter-fund distance refers not to the term least-mean-distance estimator.
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2 Methodology

2.1 Least-mean-distance estimator

Let fund i = 1, 2, . . . , n be characterized by its (net) cash flows CF t,i and its net asset values

NAV t,i with discrete time index t = 1, 2, . . . , T . The data generating processes for CF and

NAV are left unspecified. The stochastic discount factor Ψτ,t can be used to calculate the

time-τ price Pτ,t,i of a time-t cash flow of any given PE fund i

Pτ,t,i = Ψτ,t · CFt,i (1)

As SDFs are commonly parameterized by a vector θ ∈ Rp, i.e., Ψt,τ ≡ Ψt,τ (θ), our goal is

to find an estimation method for the optimal θ. For each fund i and all points τ within a

common fund lifetime, the pricing error ετ,i of all fund cash flows is calculated as

ετ,i =
T∑
t=1

Pτ,t,i ∀ τ, i (2)

To decrease the bias and variance of the Driessen et al. (2012) estimator, we define the

w-weighted τ -average fund pricing error as

ε̄i = wi ·
1

card(Ti)
∑
τ∈Ti

ετ,i ∀ i (3)

where Ti gives the set of relevant present value times τ for fund i. The cardinality card(Ti)

simply gives the number of present value dates used for the ith fund. The smallest possible

set Ti contains just a fund’s starting date and the largest set contains all time periods bigger

than the fund’s starting date until now. The optimal set size of T is studied by Monte Carlo

simulations in subsection 3.3. Each fund i is characterized by its vintage year which can be

expressed by vi = min(Ti) ∈ 1, 2, . . . , V , where V denotes the maximum vintage year used

in a given data set. Finally, the scalar weighting factor wi can be (i) one divided by the
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fund’s invested capital for equal weighting of funds, (ii) one divided by the vintage year sum

of invested capital for vintage year weighting, (iii) the scalar one for fund-size weighting, or

(iv) some macroeconomic deflator.

To find θ, our least-mean-distance estimator minimizes the average loss of ε̄

θ̂ = arg minθ∈Θ Sn(θ) with Sn(θ) =
1

n

n∑
i=1

L (ε̄i) (4)

where L denotes a loss function, e.g., L(x) = (x− 0)2. Throughout the paper, the weighted

average fund pricing error ε̄ ≡ ε̄(θ) is regarded as nonlinear random function of the SDF

parameter θ.

2.2 Cross-sectional unit: Individual fund vs. portfolio of funds

According to the classical value-additivity assumption in Hansen and Richard (1987) SDF

models invariably shall hold for all pooled or unpooled assets. So, in theory, it is not

important if the test assets for our SDF are portfolio or individual fund cash flows. Practically

it makes a difference and there are arguments both for and against portfolio formation.

In the risk premium literature, portfolio formation mainly helps to attenuate the errors-

in-variables bias connected to two-pass asset pricing methods (Jegadeesh et al., 2019; Puk-

thuanthong et al., 2019). As this is no issue in our case, we could use individual funds.

Cochrane (2011) argues that portfolio sorting (seen as an auxiliary nonparametric regres-

sion that imposes linearity on the relationship between returns and characteristics) shall be

replaced by multivariate panel models due to the curse of dimensionality. Following the

same nonparametric regression viewpoint, Cattaneo et al. (2019) derive a nonparametric

framework where the optimal number of portfolios sorts acts as a data-dependent tuning

parameter that grows with sample size. Generally, the larger the portfolios, the easier any

given SDF can price their cash flows since fewer test assets remain.

In the case of private equity funds, the pooling of fund cash flows helps to counter GP
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financial engineering2, which might both change and mask the true risk profile of observed

LP cash flows. Especially for private equity funds, portfolio formation based on vintage

year is compelling due to its time-series-like indexing as done by Driessen et al. (2012).

This procedure also offers substantial computational benefits as it drastically decreases the

number of cross-sectional units. Further, as stated in Ang et al. (2020), portfolio formation

allows more precise factor loading estimates due to decreasing idiosyncratic risk, but at the

expense of sacrificing cross-sectional information. Finally, small (or fixed) T and large N

set-ups may face finite sample problems (Raponi et al., 2020).

Assumption 1. For each vintage year, we pool fund cash flows to form nv portfolios that

serve as cross-sectional units. The two boundary cases are (i) single fund portfolios and (ii)

just one portfolio per vintage year.

Without loss of generality, we refer to our cross-sectional units as funds, although this

is just a special case of a size-nv-portfolio. In the simulation study in subsection 3.3, we

compare both boundary cases (i) individual funds and (ii) vintage year portfolios.

2.3 Asymptotic framework

To allow for multiple funds from the same vintage year in assumption 1, we employ an

auxiliary ’spatial’ notion as originally proposed by Korteweg and Nagel (2016). The spatial

viewpoint is just a technical means to switch from time-series-like to more panel-data-like

indexing. Unlike typical panel data, we do not follow multiple subjects over time, but for

each point in time, we exclusively observe multiple new cross-sectional units (i.e., funds

from that vintage year). This unusual two-dimensional indexing causes problems in the PE

literature as it neatly fits neither in the (i) time-series, (ii) cross-sectional, nor (iii) panel

data literature.

2GPs may use bridge credit facilities below the hurdle rate to boost the fund’s internal rate of return.
This increases the probability of observing funds with only positive or only negative cash flows.
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However, in this section, we mainly follow the time-series asymptotic framework of

Pötscher and Prucha (1997) since our ’spatial’ distance measure is time and adaption to our

case is thus straightforward. If we observe just one fund per vintage year (or, equivalently,

form vintage year portfolios), we can easily see that the framework of Pötscher and Prucha

(1997) with time-series indexing can be directly applied (without any major modification).

2.3.1 Vintage year asymptotics

We assume that the ’spatial’ (i.e., economic) distance between cross-sectional units, i.e., pri-

vate equity funds/portfolios, can be measured quantitatively3. Here our asymptotic theory

lets the number of funds go to infinity n → ∞. However, to expose our SDF to enough

distinct covariate realizations (economic conditions), identification of model parameters re-

quires a sufficient number of funds from different vintage years in the fund-level data set

used for model estimation as emphasized by Driessen et al. (2012) and Korteweg and Nagel

(2016).

Assumption 2. (i) The number of vintage years V → ∞ as n → ∞. (ii) The number of

funds per vintage year is bounded by some positive constant. (iii) The maximal fund lifetime

is also bounded by a positive constant. (iv) The economic distance between fund i and j is

measured by the vintage year difference di,j = vi − vj.

In terms of the spatial estimation literature, this assumption postulates increasing domain

asymptotics and rules out so-called infill asymptotics. Infill asymptotics corresponds to the

assumption of Driessen et al. (2012) that the number of funds per vintage tends to infinity.

2.3.2 Law of large numbers

The global moment condition underlying our estimation approach is that the expected value

of ε̄ shall be zero if we use the optimal SDF parameter θ0. This technically means, instead

3Generally, the economic distance measure could include multiple dimensions, e.g., temporal, geographic,
and industry sector proximity.
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of applying a time-series law of large numbers, we rely on a spatial (cross-sectional) law of

large numbers, but acknowledge the statistical dependence of pricing errors from adjacent

vintage years.

Assumption 3. The (i) time-trend and (ii) dependence structure of ε̄ shall allow

n−1

n∑
i=1

εi
a.s.→ E[ε̄] as V, n→∞

Specifically, we assume the process ε to be is spatial near-epoch dependent with respect to

fund vintage years (Jenish and Prucha, 2012), i.e., two funds with distance di,j > D are

assumed to be independent.

To satisfy the time trend part (i) of this law of large number assumption, the weighting

factor w, introduced in equation 3, can be used to make ε̄ stationary. Spatial near-epoch

dependence with respect to fund vintage years formalizes the simple idea that two fund

pricing errors ε̄ with a small absolute vintage year difference are supposed to be dependent

sine they are exposed to the same macroeconomic conditions. In contrast, two funds with a

large absolute vintage year difference can be assumed independent.

2.3.3 Consistency

The estimator θ̂ shall converge in probability to the true parameter value θ0 as the number

of distinct vintage years in our data set goes to infinity. Multiple funds for a specific vintage

year are not necessarily required but provide additional information that we want to exploit

if available.

Assumption 4. Consistency of θ̂ requires θ̂
p→ θ0 as V, n→∞. Thus E[ε̄] = 0 if and only

if θ = θ0. The parameter space is compact θ ∈ Θ.

Compactness of Θ can be assured by lower and upper bounds for all parameters that

can be justified by economic reasoning. In our case, e.g., a market beta factor of ten seems

implausible for PE funds because of the implied risk and return expectations.
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2.3.4 Central limit theorem

To assess the significance of our parameter estimates, we want to describe the asymptotic

distribution of the parameter vector as a normal distribution.

Assumption 5. (i)
√
n(θ̂ − θ0)

d→ N (0,Σ) as V, n→∞ with covariance matrix Σ.

(ii) The covariance matrix Σ can be characterized by Pötscher and Prucha (1997, Theo-

rem 11.2.b, Theorem H.1).

The formal proof of assumption 5 may be derived in analogy to the GMM case in (Jenish

and Prucha, 2012, Theorem 4) that shows that the general structure of the Pötscher and

Prucha (1997) framework also applies to the spatial near-epoch dependent case.

2.4 Large sample inference

In the time-series near-epoch-dependent least-mean-distance literature, the covariance ma-

trix Σ can be characterized according to Pötscher and Prucha (1997, Theorem 11.2.b, The-

orem H.1):

Σ = C−1Λ(C−1)>

with expected Hessian matrix converging to C as V, n→∞

E (∇θθSn)→ C

and the expected covariance matrix of gradients converging to Λ as V, n→∞

nE
[
∇θSn(∇θSn)>

]
→ Λ

Here, the gradient vector ∇θSn is denoted as column vector. We define the corresponding

finite sample estimators analogously to Pötscher and Prucha (1997, Chapters 12, 13.1), and
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numerically approximate the first and second partial derivatives by finite differences (δ → 0):

fx(x, y) ≈ f(x+ δ, y)− f(x− δ, y)

2δ

fxx(x, y) ≈ f(x+ δ, y) + f(x− δ, y)− 2f(x, y)

δ2

fxy(x, y) ≈ f(x+ δ, y + δ) + f(x− δ, y − δ)− f(x+ δ, y − δ)− f(x− δ, y + δ)

4δ2

Ĉ is relatively straightforward

Ĉ =
1

n

n∑
i=1

∇θθL (εi)

Due to the spatial near-epoch dependence, the involved and computationally expensive part

is to consistently estimate Λ̂ by a Spatial Heteroskedasticity and Autocorrelation Consistent

(SHAC) covariance matrix estimator (Kim and Sun, 2011, equation 2)

Λ̂ =
1

n

n∑
i=1

n∑
j=1

ki,j

[
∇θL (εi) (∇θL (εj))

>
]

(5)

We define the kernel weight k as

ki,j ≡ K

(
di,j
bn

)
with kernel function K : R → [0, 1] satisfies K(0) = 1, K(x) = K(−x),

∫∞
−∞K

2(x)dx < ∞,

and K(·) continuous at zero and at all but a finite number of other points. A common

choice is the Bartlett kernel KBT (x) = max(0, 1 − |x|); see equation 2.7 in Andrews (1991)

for other popular kernel choices. This means absolute vintage year differences larger than

the bandwidth (or truncation) parameter bn = D are considered independent and are thus

excluded from the Λ̂ estimation formula.

In large samples, the vector of parameter standard errors can thus be estimated by

SE(θ̂) =

√
diag

[
n−

1
2 Ĉ−1Λ̂(Ĉ−1)>(n−

1
2 )>
]

=

√
diag

[
Ĉ−1Λ̂(Ĉ−1)>

]
· 1

n
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However, given the limited amount of available private equity data (typically the oldest

vintages start in the 1980s), asymptotic characterizations of Σ and SE(θ̂) are of limited

importance. In empirical applications, the small sample behavior of an estimation method

for private equity data is more relevant than its asymptotic theory. Moreover, the standard

asymptotic distribution associated with an estimator is generally not valid for post-model-

selection inference, i.e., if a model selection procedure is applied to find the best model from

a collection of competitors (Leeb and Pötscher, 2005).

2.5 Comparison to similar estimators

Our least-mean-distance estimator developed in section 2.1 belongs to the class of semipara-

metric nonlinear M-estimators as defined in Pötscher and Prucha (1997). The estimator

exhibits a cross-sectional nature since Sn(θ) in equation 4 takes the sample average with

respect to funds rather than with respect to a vintage-year-based time-series. We inten-

tionally opt against the most prominent semiparametric nonlinear M-estimator framework,

i.e., classical time-series Generalized Method of Moments (GMM) (Hansen, 1982, 2012). A

classical GMM approach requires the construction of stationary, ergodic time-series of mo-

ment conditions that are used to empirically estimate the expected value of pricing errors

in equation 2. The stationarity requirement of classical time-series GMM limits (i) more

elaborate weighting-schemes for w, like fund-size weighting, and (ii) the usage of fund cash

flows from non-realized vintages.

The Driessen et al. (2012) approach is most closely related to our methodology. However,

they regard vintage year portfolios as their cross-sectional units; we can also use individual

funds. The Driessen et al. (2012) asymptotic theory assumes the number of funds (or deals)

per vintage year portfolio to go to infinity. Our asymptotic theory lets both (i) the number

of vintage years and (ii) the number of funds go to infinity, but bounds the number of funds

per vintage year. Further, Driessen et al. (2012) discount all fund cash flows just to the first

cash flow date (like in a classical net present value calculation). In contrast, we additionally
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average over all dates within Ti to alleviate the exploding alpha issue briefly mentioned in

their paper (and more thoroughly so in an earlier working paper version). Although Driessen

et al. (2012) describe their estimator as a one-step GMM approach, we consider it a special

case of our least-mean-distance estimator. Specifically, if someone accepts the assumptions

from subsection 2.3, our large sample inference framework from subsection 2.4 applies to

their case without any significant modification.

Korteweg and Nagel (2016), first of all, realized the usefulness of employing an auxiliary

spatial framework to handle a fund-level panel dataset of private equity funds. They measure

the economic distance between two private equity funds (by the degree of cash flow overlap)

to account for the cross-sectional dependence between funds. Concretely, their asymptotic

inference framework draws on the spatial HAC estimator of Conley (1999). However, they

ultimately utilize a classical GMM estimator, thus a time-series law of large numbers. Time-

series GMM estimators inherently bear the risk of under-identification, if the corresponding

time-series is constructed by pooling all fund cash flows from a given fund type. To counter

under-identification, additional characteristic based fund portfolios could be formed to in-

crease the number of moment conditions per fund type; also, random portfolios combined

with bootstrapping make sense. Yet, Korteweg and Nagel (2016) take another approach and

introduce the concept of Generalized Public Market Equivalent (GPME), which elegantly

avoids the under-identification issue. Firstly, a public market SDF model is estimated by

pricing public trading strategies that shall replicate PE funds instead of directly pricing the

observed PE fund cash flows. Only in a second step, these public market SDF models are

applied to evaluate private equity fund cash flows.
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3 Empirical application

3.1 Data

We use the Preqin cash flow data set as of 26th February 2020. We pool all regions and

analyze the following fund types (using the Preqin asset class classification): PE (”Private

Equity”; 2248 distinct funds in data set; 36 vintage years), VC (”Venture Capital”; 871; 36),

RE (”Real Estate”; 742; 27), PD (”Private Debt”; 441; 31), INF (”Infrastructure”, 144; 17),

NR (”Natural Resources”, 138; 26). For these fund types, we extract all (i) equal-weighted

and (ii) fund-size-weighted cash flow series. For non-liquidated funds, we treat the latest net

asset value as final cash flow. We explicitly refrain from excluding the most recent vintage

years. Thus, the minimum vintage year is 1983 (just for PE) and the maximum is 2019.

The public market factors that enter our SDF draw on the US data set of the recently

popularized q5 investment factor model sourced from http://global-q.org/factors.html

(Hou et al., 2015, 2020). Their five-factor model includes the market excess return (MKT),

a size factor (ME), an investment factor (IA), a return on equity factor (ROE), and an

expected growth factor (EG).

3.2 Model and estimator specifications

We test a simple linear SDF model as in Driessen et al. (2012)

ΨSL
τ,t(θ) =

t∏
h=0

(
1 + α + rh +

∑
j

βj Fj,h

)−1 τ∏
h=0

(
1 + α + rh +

∑
j

βj Fj,h

)
(6)

and an exponential affine SDF model adapted from Korteweg and Nagel (2016)

ΨEA
τ,t (θ) = exp

[
−

t∑
h=τ

(
α + log(1 + rh) +

∑
j∈J

βj · log(1 + Fj,h)

)]
(7)
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with (arithmetic) risk-free return r, (arithmetic) zero-net-investment portfolio returns Fj,

and parameter vector θ = (α, β). To avoid overfitting, we just test six simple SDF models

that contain {MKT} alone or {MKT} plus {ME or IA or ROE or EG or Alpha}. In equation

4, we use the quadratic loss function L(x) = x2.

To assess the parameter significance, we compute the asymptotic standard errors as

outlined in subsection 2.4. For the Bartlett kernel’s bandwidth bn = D we select 12 years,

i.e., funds with absolute vintage year differences larger than 12 years are assumed to be

independent.

Additionally, we want to test the finite - or more honestly small - sample parameter

significance and the out-of-sample performance of our SDF models. To account for the de-

pendency between funds from adjacent vintage years caused by overlapping fund cash flows,

we draw on hv-block cross-validation (Racine, 2000). Therefore, we form three partitions for

several vintage year groups. As larger validation sets are preferred for model selection, the

validation set (v-block) always contains funds of three neighboring vintage years (e.g. 2000,

2001, 2002). To reduce the dependency between training and validation set, we remove all

funds from three-year-adjacent vintage years, i.e., the h-block (e.g. 1997, 1998, 1999, 2003,

2004, 2005). Funds from the remaining vintage years enter the training set and are thus used

for model estimation (e.g. 1985-1996, 2006-2019). We apply ten-fold cross validation using

the ten validation sets described in table 1. This means, we replace the bootstrap standard

error calculation of Driessen et al. (2012) by hv-block cross-validation since the new method

focuses directly on the out-of-sample performance of the SDF models and, in addition to it,

is computationally cheaper.

3.3 Simulation study

Our Monte Carlo experiments examine the following questions related to the bias and vari-

ance of our estimation methodology in finite samples. Is it beneficial to use vintage year

portfolios instead of individual funds? Which SDF model performs better when we also use
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training.before h.block.before v.block h.block.after training.after
estimation remove validation remove estimation

start-1984 1985,1986,1987 1988,1989,1990 1991,1992,1993 1994-end
start-1987 1988,1989,1990 1991,1992,1993 1994,1995,1996 1997-end
start-1990 1991,1992,1993 1994,1995,1996 1997,1998,1999 2000-end
start-1993 1994,1995,1996 1997,1998,1999 2000,2001,2002 2003-end
start-1996 1997,1998,1999 2000,2001,2002 2003,2004,2005 2006-end
start-1999 2000,2001,2002 2003,2004,2005 2006,2007,2008 2009-end
start-2002 2003,2004,2005 2006,2007,2008 2009,2010,2011 2012-end
start-2005 2006,2007,2008 2009,2010,2011 2012,2013,2014 2015-end
start-2008 2009,2010,2011 2012,2013,2014 2015,2016,2017 2018-end
start-2011 2012,2013,2014 2015,2016,2017 2018,2019,2020 2021-end

Table 1: Partitions used for hv-block cross-validation.

the corresponding data generating process (i.e., assume correct model specification)? How is

estimator precision affected by varying numbers of vintage years and cross-sectional units?

Which is the optimal set of present value times T ?

We use historical q-investment factors from 1986 to 2005 and simulate 20 funds for each

of these 20 vintage years. Each fund contains 15 deals with equal investment amounts and

exactly one divestment cash flow. Deals are entered within the first five years of fund lifetime

following a discrete uniform distribution and afterward held between one to ten years again

uniformly distributed. The deal returns are generated by the simple linear or exponential

affine SDF models described in equations 6 and 7. In the base case, we just use the MKT

factor with βMKT = 1 and in each month add a normal i.i.d. error term with standard

deviation σ = 0.2 and zero mean. Additionally, we test an intercept term α of -0.25% per

month and a high βMKT of 2.5. In the exponential affine case, we adjust the log-normally

distributed error mean to zero by subtracting 0.5σ2. If a negative return exceeds -100%, the

company defaults with a zero exit cash flow. In contrast, the error term in the simulations

of Driessen et al. (2012) is more well-behaved as it follows a shifted lognormal distribution

that, even with arbitrarily high error term variance, just allows for returns below say -99%,

if the market return is close to its lower bound (see equation 9 in their online appendix). In

our base case, the set of present value dates T contains all months from the first cash flow
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to maximum month 180. To assess our estimator’s bias and variance, we simulate 1000 test

scenarios for vintage year portfolios and just 200 test cases when using individual funds due

to memory restrictions.

Cross-sectional unit i: As presumed in subsection 2.2, vintage year portfolio results ap-

pear to have lower bias and variance when compared to individual funds. For the simple

linear SDF and maximum month 180, the mean and standard deviation of the coefficient

estimate β̂MKT is 1.016 (0.2) for the vintage year portfolio and 1.096 (0.376) for individ-

ual funds. However, for individual funds, we just simulate 200 iterations due to the high

computational cost.

This finding has two important implications: On the one hand, vintage year portfolio

formation can substantially decrease our estimator’s bias and variance. On the other hand,

it also dramatically reduces the number of cross-sectional units and consequentially impairs

the importance of asymptotic results.

SDF model Ψ: In our base case with vintage year portfolios, the exponential affine SDF

shows a mean and standard deviation of 1.011 (0.175) compared to the 1.016 (0.2) achieved

by the simple linear SDF. Generally, the exponential affine SDF model and the simple linear

SDF model exhibit similar bias and variance when comparing panels A and B in table 4.

This indicates that the results are not overly sensitive to the choice of the SDF model.

Moreover, the perceived superiority of exponential affine SDFs is probably rather the-

oretical than practical as other proponents also emphasize their universality mainly from

a mathematical perspective without providing supportive empirical or simulation results

(Gourieroux and Monfort, 2007; Bertholon et al., 2008).

Varying vintages V and portfolio sizes n/V : To test the effect of varying data sizes

available for MKT factor estimation, we in/decrease the (i) number of vintage years and

(ii) the number of funds per vintage year (cf. table 2). Here we use vintage year portfolios
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and the simple linear SDF. For our simple data generating process, increasing the number

of deals/funds per vintage year portfolio appears to decrease the estimator’s variance more

effectively than adding more vintage years. However, the bias is almost the same for all tested

specifications. Generally, we seem to need many new data points to ensure a reasonable

variance of our estimator.

Base Big n/V Big V Big V Small V Small V

Start vintage 1986 1986 1967 1967 1986 1996
End vintage 2005 2005 2005 2005 1995 2005

#Funds per vintage 20 40 10 20 20 20
Mean βMKT 1.011 1.020 0.993 1.015 1.027 0.934
Stdv βMKT 0.187 0.133 0.263 0.227 0.232 0.418

Table 2: Simulation study for varying number of vintages and number of funds per vintage.
We use vintage year portfolios, the simple linear SDF with true βMKT = 1, maximum month
180, and 500 simulation iterations.

Size of set T : The results in table 4 indicate that we can control the bias by an appropriate

choice of the set T . The bias almost vanishes when we average over all present value dates in

the maximal fund lifetime of 180 months. For smaller or larger sets for T , we find increasing

bias.

This also holds when we limit the maximal fund lifetime to ten years by reducing the

maximum deal holding period from ten to five years. Here, under correct model specification

with βMKT = 1 , the smallest bias is obtained for maximum month 120: for max. month 60

we get 1.028 (0.116), for max. month 120 we get 1.005 (0.116), and for max. month 180 we

get 0.969 (0.13).

In table 4 for both true and false model specifications, the α standard deviation is very

high compared to its mean value. This may indicate it is rather delicate to empirically de-

termine private equity’s historical outperformance by our semiparametric estimator.

To conclude, our simulations study rationalizes two key practices from the Driessen et al.

(2012) paper: (i) vintage year portfolio formation helps to improve estimator precision and

17



(ii) increasing the number of funds per vintage seems to be more effective in controlling

estimator variance that increasing the number of vintages4. However, our examples with

correct specification cannot support the assumption of Korteweg and Nagel (2016) that (iii)

the exponential affine SDF is (clearly) superior to the simple liner SDF in a multi-period

framework; actually, their bias and variances are quite equal. Moreover, our simulation

study suggests that (iv) averaging pricing errors over multiple dates strikingly reduces the

bias inherent to the original procedure of Driessen et al. (2012) that just discounts all cash

flows to the fund inception date. Actually, choosing the set T according to the fund lifetime

seems to decrease the bias (and to a lesser extend also the variance) more effectively than

all other measures combined.

3.4 Empirical results

Following the conclusions from the previous subsection, we use vintage year portfolios to

estimate simple linear SDF models with maximum month 180. Asymptotic inference results

for the full dataset are exhibited in table 5 for fund-size weighting and in table 7 for equal

weighting. The results for hv-block cross-validation are displayed in table 6 for fund-size

weighting and in table 8 for equal weighting. We generally analyze the results in a two-

step procedure: For a given model specification, we use the cross-validation error (i.e., the

average out-of-sample error) to select the best model for each fund type, but analyze the

corresponding coefficient estimates from the asymptotic inference tables (estimated on the

entire data set). Therefore, for each fund type the SDF models in the asymptotic inference

tables 5 and 7 are sorted by the corresponding cross-validation error. Throughout this

subsection, we define the statistical significance of coefficient estimates in terms of a t-ratio

θ̂[SE(θ̂)]−1 greater than 1.96.

Table 3 helps to get a rough overview of tables 5 to 8 as it summarizes their absolute

column means. Conspicuously, asymptotic standard errors (SEs) seem enormously high and,

4Finding (ii) may explain the choice of Driessen et al. (2012) to employ an asymptotic law that lets the
number of deals/funds per vintage tend to infinity.
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MKT Factor Second Factor
Weighting Inference Coef SE SE.indep Coef SE SE.indep

fund-size asymptotic 0.75 27.06 19.73 0.80 28.95 20.94
fund-size cross-validation 0.85 0.38 - 0.59 0.51 -
equal asymptotic 0.76 26.75 16.16 0.76 11.25 6.69
equal cross-validation 0.84 0.34 - 0.62 0.50 -

Table 3: Top-level overview over tables 5 to 8: Averages of absolute values of coefficient
estimates and standard errors.

moreover, contain colossal outliers. The standard errors implied by hv−block cross-validation

are considerably smaller than the asymptotic SEs and seem to lie within a plausible range.

When just looking at asymptotic standard errors of the second factors, fund-size weight-

ing exhibits substantially larger SEs than fund equal-weighting. Assuming independence

between funds from different vintages decreases asymptotic SEs by approximately 30-40%

compared to a realistic kernel bandwidth of D = 12. But even these independent SEs rarely

imply statistical significance coefficient estimates with t-ratios bigger than 1.96. In table 5

with fund-size weighting, just one out of 36 models exhibit asymptotically significant MKT

and second-factor estimates. In the case of equal-weighting, table 7 also shows just one

asymptotically significant model out of 36.

In summary, the results reveal weak two-factor models with MKT plus a second q-

investment factor. Likewise, the simulation results from the previous subsection indicate

a rather high variance associated with our semiparametric estimator (given the amount

of data typically available). Thus, we recommend focusing on single MKT factor models

even when their asymptotic t-ratios are below 1.96. At least the hv-block cross-validation

standard deviations imply significant one-factor MKT models for fund types PE, VC, PD,

INF. In contrast, RE is just significant for equal-weighting, and NR is insignificant for both

weighting schemes.

Focus on PE and VC estimates Here, we briefly summarize the one-factor MKT and

the two-factor Alpha model estimates for fund types PE (i.e., mainly Buyout and Growth)
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and VC. For PE, all one-factor MKT model βMKT estimates fall in the range from 1.13

to 1.28. If we add an α term, all βMKT estimates decrease to the range 0.61 to 0.77 with

annualized α coefficients of approximately positive 4-5% per year. For VC, the one-factor

MKT model βMKT estimates are in the range from 0.80 to 1.14. If we add an α term, all

βMKT estimates strongly increase to the range 1.81 to 2.06 with annualized α coefficients of

approximately negative 6-7% per year. These results at least weakly indicate - given their

insignificant asymptotic standard errors - that PE funds outperform public markets with

a market beta coefficient of less than one, which suggests low market risk. On the other

hand, VC underperforms public markets with market beta coefficients of roughly two, which

implies high market risk. So, even Driessen et al. (2012) use the problematic since biased

TVE dataset for their empirical analysis, we obtain similar qualitative results using Preqin

data: (i) the market beta of VC seems to be higher than that of PE and (ii) VC, in contrast

to PE, appears to exhibit a negative abnormal performance α.

As a robustness check, we reestimate all SDF models on a dataset that just contains

funds from vintages older or equal than 2011. Interestingly, the PE and VC results regarding

βMKT and α can be qualitatively and also quantitatively confirmed on this ’mostly-liquidated’

dataset5.

4 Conclusion

Theoretically, our least-mean-distance estimator can be easily generalized to estimate SDF

models for all kinds of non-traded cash flows. Practically, semiparametric estimators com-

monly exhibit problematic small sample behavior. Given the amount of currently available

private equity fund data, our estimator’s variance seems quite large, even for simple SDF

model specifications. Specifically, our Monte Carlo simulation results prompt us to conclude

that the closely related Driessen et al. (2012) estimator may exhibit more bias and variance

than originally assumed in their paper. Especially, the variance of α estimates seems to be

5All R code and data is available in an online repository.
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too high to allow reliable abnormal performance conclusions. Fortunately, we show that at

least the bias can be easily reduced by averaging pricing errors over all dates within the fund

lifetime.

In the data-sparse private equity domain with only 20-40 cross-sectional units (i.e., vin-

tage year portfolios) currently available for estimation, asymptotic inference seems not to be

overly useful. Thus, we strongly advise to always challenge asymptotic inference results by

resampling or cross-validation techniques that are adapted to the dependence structure of

overlapping fund cash flows. However, even their conclusions should be double-checked, to

avoid unreasonable instances, e.g., when hv-block cross-validation chooses dubious models

with negative MKT factor estimates. Since, in our empirical analyses, basically all two-

factor models’ asymptotic standard errors appear statistically insignificant, we conjecture

that naive versions of our SDF estimator shall be exclusively used for a single-MKT-factor

model until considerably more vintage year information for private equity funds is available.

If someone wants to estimate more complex SDF models that incorporate additional fac-

tors, more structure is needed. This can be parametric assumptions for the data generating

process (Ang et al., 2018) or to extract additional information from intermediate net asset

values (Gredil et al., 2019; Brown et al., 2020). A first ’modern’ approach to the same

problem is applying machine learning techniques that regularize/shrink all coefficients other

than the MKT factor. Secondly, given the high estimator variance revealed in the simulation

study, statistical learning methods that create a strong learner by combining multiple weak

learners seem also worth considering (boosting, bagging, model averaging).
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Panel A: simple linear SDF
Model==DGP True False False True
MaxMonth β = 1 α = 0 β = 1 β = 2.5 α = −0.25 β = 2.5

1 - mean 1.168 1625 0.003 2.023 5879 -16.711
1 - stdv 0.269 2792 9.968 0.342 866 13.347
60 - mean 1.129 0.138 0.933 2.103 -0.086 2.285
60 - stdv 0.242 0.245 0.363 0.302 0.253 0.406
120 - mean 1.058 0.112 0.906 2.063 -0.085 2.239
120 - stdv 0.200 0.214 0.313 0.253 0.239 0.385
180 - mean 1.016 0.041 0.965 2.052 -0.161 2.370
180 - stdv 0.200 0.172 0.334 0.277 0.173 0.403
240 - mean 0.987 -0.053 1.077 2.072 -0.277 2.589
240 - stdv 0.223 0.162 0.361 0.326 0.118 0.375
300 - mean 0.946 -0.149 1.175 2.080 -0.357 2.714
300 - stdv 0.235 0.174 0.377 0.398 0.114 0.366
360 - mean 0.895 -0.245 1.269 2.048 -0.461 2.859
360 - stdv 0.268 0.201 0.399 0.551 0.140 0.386

Panel B: exponential affine SDF
Model==DGP True False False True
MaxMonth β = 1 α = 0 β = 1 β = 2.5 α = −0.25 β = 2.5

1 - mean 1.207 203 1.276 2.256 692 1.704
1 - stdv 0.344 314 0.710 0.290 13 1.666
60 - mean 1.146 0.126 0.941 2.264 -0.018 2.277
60 - stdv 0.275 0.264 0.386 0.256 0.370 0.473
120 - mean 1.062 0.107 0.908 2.221 0.009 2.205
120 - stdv 0.200 0.237 0.333 0.187 0.357 0.448
180 - mean 1.011 0.027 0.971 2.182 -0.136 2.358
180 - stdv 0.175 0.211 0.366 0.168 0.344 0.505
240 - mean 0.972 -0.088 1.095 2.144 -0.441 2.723
240 - stdv 0.174 0.224 0.406 0.178 0.317 0.503
300 - mean 0.928 -0.202 1.203 2.083 -0.717 2.985
300 - stdv 0.181 0.253 0.426 0.254 0.340 0.513
360 - mean 0.874 -0.319 1.304 1.685 -1.095 3.272
360 - stdv 0.208 0.291 0.447 0.772 0.374 0.586

Table 4: Simulation study to compare the simple linear with the exponential affine SDF
and to determine the optimal size of the set T . Here, we always use vintage year portfolios
and 1000 simulation iterations. For better readability, βMKT = β and all monthly α values
are multiplied by 100. For the unity and high beta model, we test true and false model
specifications (with and without the α term).
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MKT Factor Second Factor
Type Estim. SE SE.indep Factor Estim. SE SE.indep

PE 0.709 2.470 1.153 EG 0.807 4.693 1.960
PE 0.770 7.976 3.348 ROE 1.540 5.140 3.499
PE 1.126 1.003 0.868 MKT 1.126 1.003 0.868
PE 0.644 1.234 0.585 Alpha 0.003 0.036 0.013
PE 1.121 1.023 0.897 ME 0.074 2.021 0.915
PE 1.158 1.125 1.068 IA -0.338 2.499 1.259
VC 1.053 4.150 2.733 IA -1.959 2.100 1.767
VC 1.114 3.861 2.894 ME -1.383 5.102 2.211
VC 1.806 11.391 4.279 Alpha -0.006 0.124 0.046
VC 0.801 704.455 561.598 MKT 0.801 704.455 561.598
VC 1.429 8.073 3.219 ROE -1.306 18.055 6.919
VC 1.507 17.322 6.966 EG -0.904 15.344 5.737
PD 0.885 1.040 1.242 MKT 0.885 1.040 1.242
PD 0.660 0.095 0.039 Alpha 0.002 0.001 0.000
PD 0.826 1.707 1.443 EG 0.143 20.341 7.506
PD 0.849 2.921 2.146 ME 0.301 2.739 1.518
PD 0.887 1.378 1.244 ROE -0.023 6.925 2.553
PD 0.863 2.942 2.224 IA 0.247 5.306 3.607
RE 0.578 1.827 1.196 MKT 0.578 1.827 1.196
RE 1.303 5.463 2.259 Alpha -0.006 0.088 0.034
RE 0.200 2.598 1.356 ROE 3.118 2.579 6.629
RE 0.202 3.297 1.965 EG 0.844 2.478 1.828
RE 0.756 3.043 2.192 IA -1.938 1.879 0.783
RE 0.887 1.167 0.858 ME -2.059 1.300 0.563
NR -0.215 2.367 1.976 EG 0.909 14.505 7.475
NR 0.191 3.136 4.242 MKT 0.191 3.136 4.242
NR -0.674 58.003 24.234 Alpha 0.008 0.230 0.098
NR -0.020 0.954 2.210 ROE 1.128 4.830 5.066
NR 0.143 3.236 4.116 IA -0.768 1.808 2.154
NR 0.212 4.209 5.450 ME -0.575 1.603 1.252
INF 0.824 3.201 2.815 MKT 0.824 3.201 2.815
INF 0.190 7.133 3.288 Alpha 0.005 0.030 0.025
INF 0.317 23.904 10.658 EG 0.848 45.836 20.176
INF 0.470 9.316 4.237 ROE 1.245 5.531 6.134
INF 0.778 5.951 5.424 ME -0.811 3.712 4.349
INF 0.661 61.329 33.819 IA -1.108 150.713 85.733

Table 5: Asymptotic inference with fund-size-weighting, max month 180, and D = 12.
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MKT Factor Second Factor
Type Mean SD Factor Mean SD CV-error

PE 0.867 0.276 EG 0.720 0.137 112808.000
PE 0.927 0.305 ROE 1.375 0.420 126801.000
PE 1.276 0.296 MKT 1.276 0.296 151964.000
PE 0.772 0.238 Alpha 0.004 0.002 154805.000
PE 1.317 0.396 ME 0.236 0.664 209319.000
PE 1.311 0.370 IA 0.014 0.703 210650.000
VC 1.045 0.126 IA -1.890 0.238 11858.000
VC 1.172 0.126 ME -1.448 0.263 13301.000
VC 1.930 0.356 Alpha -0.005 0.001 17723.000
VC 0.804 0.363 MKT 0.804 0.363 21852.000
VC 1.527 0.517 ROE -0.972 0.679 26680.000
VC 1.646 0.678 EG -0.644 0.556 32730.000
PD 0.887 0.039 MKT 0.887 0.039 7368.000
PD 0.567 0.202 Alpha 0.003 0.001 7917.000
PD 0.763 0.113 EG 0.229 0.141 8758.000
PD 0.862 0.103 ME 0.342 0.256 9834.000
PD 0.812 0.153 ROE 0.258 0.394 11522.000
PD 0.914 0.211 IA 0.472 0.424 18096.000
RE 0.722 0.392 MKT 0.722 0.392 50900.000
RE 1.288 0.345 Alpha -0.004 0.005 51437.000
RE 0.389 0.446 ROE 2.333 1.507 54689.000
RE 0.465 0.470 EG 0.448 0.629 59316.000
RE 0.847 0.411 IA -1.262 1.160 65835.000
RE 0.983 0.350 ME -1.467 1.298 66827.000
NR -0.047 0.421 EG 0.657 0.557 10559.000
NR 0.318 0.321 MKT 0.318 0.321 11480.000
NR -0.335 0.763 Alpha 0.006 0.005 11854.000
NR 0.136 0.466 ROE 0.844 1.062 13296.000
NR 0.270 0.508 IA -0.288 1.124 14479.000
NR 0.416 0.587 ME 0.032 1.079 15789.000
INF 0.862 0.320 MKT 0.862 0.320 14551.000
INF 0.639 0.753 Alpha 0.002 0.004 15069.000
INF 0.766 0.626 EG 0.258 0.495 16004.000
INF 0.837 0.504 ROE 0.090 0.939 18472.000
INF 0.868 0.412 ME 0.078 0.643 18514.000
INF 0.892 0.561 IA 0.081 1.073 23162.000

Table 6: hv-block cross-validation with fund-size-weighting and max month 180.
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MKT Factor Second Factor
Type Estim. SE SE.indep Factor Estim. SE SE.indep

PE 0.775 0.638 0.550 EG 0.667 5.558 2.125
PE 0.610 1.064 0.387 Alpha 0.004 0.006 0.002
PE 0.826 20.352 8.308 ROE 1.087 33.514 12.143
PE 1.134 1.050 0.694 MKT 1.134 1.050 0.694
PE 1.146 1.001 0.638 IA -0.386 1.909 0.813
PE 1.134 1.048 0.702 ME -0.014 1.797 0.736
VC 1.181 24.418 16.693 ME -1.277 4.928 4.352
VC 1.137 7.259 6.057 IA -1.553 3.716 2.139
VC 1.956 4.189 1.520 Alpha -0.006 0.335 0.117
VC 1.034 2.205 1.758 MKT 1.034 2.205 1.758
VC 1.488 1.801 0.941 ROE -1.148 4.060 1.424
VC 1.535 2.821 1.336 EG -0.754 3.626 1.260
PD 0.844 1.245 0.856 MKT 0.844 1.245 0.856
PD 0.502 0.044 0.015 Alpha 0.003 0.000 0.000
PD 0.791 2.478 1.557 ROE 0.222 5.024 1.966
PD 0.736 2.230 1.303 EG 0.213 6.296 2.374
PD 0.844 1.150 0.837 IA 0.076 2.543 1.416
PD 0.833 1.978 1.362 ME 0.323 1.845 0.986
RE 0.743 3.471 2.075 MKT 0.743 3.471 2.075
RE 1.265 7.581 3.331 Alpha -0.004 0.046 0.017
RE 0.145 3.486 1.614 ROE 3.202 17.447 7.413
RE 0.400 50.493 31.818 EG 0.700 48.813 29.195
RE 0.884 4.928 2.813 ME -1.782 1.474 0.605
RE 0.795 18.146 10.282 IA -1.712 13.199 7.657
NR -0.056 3.693 1.897 ROE 1.934 3.154 2.287
NR 0.000 4.771 2.368 EG 0.814 1.368 1.753
NR 0.425 3.370 5.178 MKT 0.425 3.370 5.178
NR -0.272 39.463 16.698 Alpha 0.006 0.202 0.081
NR 0.394 0.871 1.401 IA -0.319 1.734 1.169
NR 0.453 15.719 24.377 ME 0.432 5.574 8.016
INF 0.098 0.055 0.025 Alpha 0.006 0.001 0.000
INF 0.280 20.158 8.983 EG 0.893 21.368 9.700
INF 0.775 19.273 22.509 MKT 0.775 19.273 22.509
INF 0.469 26.226 12.751 ROE 1.030 30.728 16.129
INF 0.758 33.453 36.239 ME -0.804 16.214 16.161
INF 0.664 630.801 351.730 IA -0.929 137.937 75.628

Table 7: Asymptotic inference with equal-weighting, max month 180, and D = 12.
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MKT Factor Second Factor
Type Mean SD Factor Mean SD CV-error

PE 0.886 0.262 EG 0.614 0.217 101444.000
PE 0.719 0.205 Alpha 0.004 0.001 105842.000
PE 0.948 0.267 ROE 0.975 0.407 110926.000
PE 1.250 0.262 MKT 1.250 0.262 127589.000
PE 1.247 0.274 IA -0.183 0.598 157037.000
PE 1.281 0.323 ME 0.048 0.644 169552.000
VC 1.250 0.153 ME -1.292 0.234 16305.000
VC 1.183 0.169 IA -1.507 0.327 16449.000
VC 2.052 0.257 Alpha -0.006 0.001 18666.000
VC 1.138 0.341 MKT 1.138 0.341 25321.000
VC 1.610 0.431 ROE -0.946 0.426 26618.000
VC 1.688 0.505 EG -0.616 0.331 30392.000
PD 0.838 0.029 MKT 0.838 0.029 11290.000
PD 0.458 0.151 Alpha 0.003 0.001 11568.000
PD 0.770 0.058 ROE 0.232 0.111 11572.000
PD 0.707 0.086 EG 0.224 0.091 12194.000
PD 0.825 0.083 IA 0.158 0.305 15071.000
PD 0.837 0.098 ME 0.358 0.328 15441.000
RE 0.803 0.336 MKT 0.803 0.336 43486.000
RE 1.191 0.363 Alpha -0.003 0.004 45310.000
RE 0.341 0.402 ROE 2.275 1.558 52822.000
RE 0.559 0.379 EG 0.397 0.503 52867.000
RE 0.929 0.339 ME -1.287 1.174 57341.000
RE 0.852 0.372 IA -1.129 1.025 57662.000
NR -0.009 0.203 ROE 1.880 0.562 15631.000
NR 0.200 0.510 EG 0.681 0.372 18981.000
NR 0.572 0.400 MKT 0.572 0.400 20006.000
NR -0.065 0.729 Alpha 0.006 0.004 20880.000
NR 0.596 0.567 IA -0.060 0.869 24766.000
NR 0.769 0.771 ME 0.666 1.062 27238.000
INF 0.124 0.608 Alpha 0.007 0.006 14995.000
INF 0.613 0.393 EG 0.402 0.496 15758.000
INF 0.862 0.281 MKT 0.862 0.281 15820.000
INF 0.627 0.360 ROE 0.577 1.374 18297.000
INF 0.810 0.315 ME -0.129 1.109 19641.000
INF 0.797 0.842 IA 0.051 2.180 33661.000

Table 8: hv-block cross-validation with equal-weighting and max month 180.
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