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title & abstract

Title: On semiparametric Stochastic Discount Factor (SDF) estimators
for private equity fund data

Abstract: First, this talk introduces a new spatial SDF estimation
framework developed for private equity funds and compares it to
similar methodologies. Simulation results suggest that the estimator
can improve current approaches, but empirical results remain often
insignificant. Second, the talk exhibits how (and why) model
combination is used to obtain a strong SDF model from a collection
of weak competitors. Consequentially, the empirical model
combination results for several private equity fund types appear
reasonable.
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1 introduction



1.1 overview of phd thesis contents

Stochastic Discount Factor Methods for Non-Traded Cash Flows -
The Case of Private Equity

Part I Introduction
1. Non-traded cash flows
2. Stochastic discount factors (SDFs)

Part II Numeraire portfolio methods
3. Public numeraire equivalent benchmarking
4. Quadratic hedging strategies for private equity fund payment

streams
Part III Semiparametric SDF methods

5. A spatial SDF estimator for private equity funds
6. The public factor exposure of private equity

Part IV Parametric SDF methods
7. Risk modeling by parametric SDFs
8. Modeling the exit cash flows of private equity fund investments
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1.2 private equity fund cash flows and value
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1.3 notation & variable definitions

Private equity fund i = 1, 2, . . . ,n is characterized by:

Net Asset Value NAVi,t (fund value proxy)
Net Cash Flow CFi,t (fund distributions minus contributions)
Vintage Year Vi (fund inception year)

Public market is given by:

SDF Ψτ,t > 0 (stochastic discount factor from t to τ )
Risk-free Rate rt (from period t− 1 to t)
Factor Return Fj,t ≥ 0 (zero-net-investment return from t− 1 to t)

Time is discrete t = 1, 2, . . . , T.
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1.4 stochastic discount factors

Stochastic discount factors (SDFs)

∙ General pricing framework in empirical finance.
∙ SDFs allow to move cash flows in time.

We can calculate the time-τ price of a time-t cash flow by

Pτ,t,i = E
[
Ψτ,t · CFt,i

]
∀ τ, t, i (1)

where the SDF Ψτ,t = Ψτ,t(θ) depends on the parameter vector θ.

If τ and t are both in the past, the realized price is given by

Pτ,t,i = Ψτ,t · CFt,i ∀ τ, t, i (2)

with τ ≤ t or τ ≥ t.
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2 semiparametric estimation framework



2.1 semiparametric estimators

∙ Empirical asset pricing usually uses semiparametric approaches
to determine the ’optimal’ parameter vector θ of the SDF Ψτ,t(θ).

∙ Semiparametric means we impose no distributional
assumptions on the random variable Ψ.

∙ The parameter vector θ contains no distributional parameters
(like µ, σ for a normal distribution).

∙ We want to parsimoniously explain asset returns (cash flows).
∙ When testing SDFs, we want to test if a given SDF satisfactorily
prices the assets and not if the asset returns are (e.g.) normally
distributed.

∙ Parametric estimation (like maximum likelihood) is usually more
efficient (unbiased with smaller variance) when we know the
underlying distribution.
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2.2 least-mean distance (lmd) estimator

The fund i pricing error at time τ is defined as

ϵτ,i =
T∑

t=1
Pτ,t,i =

T∑
t=1

Ψτ,t · CFt,i ∀ τ, i (3)

The wi-weighted and Ti-averaged fund pricing error is defined as

ϵ̄i = wi ·
1

card(Ti)
∑
τ∈Ti

ϵτ,i ∀ i (4)

where Ti is the set of relevant net present value dates for fund i.

To find θ, our LMD estimator minimizes the average square of ϵ̄

θ̂ = arg minθ∈Θ Sn(θ) with Sn(θ) =
1
n

n∑
i=1

(ϵ̄i)
2 (5)
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2.3 average(d) pricing error visualization

∙ The time index t is relevant for the net cash flows (black dots).
∙ The time index τ is used for the net present values (NPVs) of
this net cash flow stream (blue boxes).

∙ The weighted average of these net present values gives the
average pricing error ϵ̄ as defined in equation 4 (solid blue line).
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2.4 comparison to similar estimators

[Driessen et al., 2012] just include fund inception date in Ti.
[Korteweg and Nagel, 2016] replace Sn(θ) in equation 5 by

Sn(θ) =
( 1
n
∑n

i=1 ϵ̄i
)2.

[Driessen et al., 2012] [Korteweg and Nagel, 2016] Our approach
M-estimator Least-Mean- Generalized Method Least-Mean-

Distance of Moments Distance
Pricing error averaging No No Yes
Cash flows priced PE cash flows public cash flows PE cash flows
Asymptotics cross-sectional time-series spatial

#funds → ∞ #vintages → ∞ # of both → ∞
Inference bootstrap spatial HAC cross-validation

& spatial HAC
Cross-sectional unit vintage year portfolio single fund testing both
SDF simple linear exponentially affine testing both

Table: Comparison to similar estimation frameworks.
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2.5 underlying assumptions

Formal SDF estimation framework based on 5 assumptions:

1. Vintage year portfolios (VYPs): group all n funds into VYPs.
2. Vintage year asymptotics: n → ∞ as V → ∞.
3. Law of large numbers: n−1 ∑n

i=1 ϵi
a.s.→ E[ϵ̄] as V,n → ∞.

4. Consistency: θ̂ p→ θ0 as V,n → ∞. E[ϵ̄] = 0 if and only if θ = θ0.

5. Central limit theorem:
√
n(θ̂ − θ0)

d→ N (0,Σ) as V,n → ∞ with
covariance matrix Σ characterized according to
[Pötscher and Prucha, 1997, Theorem 11.2.b, Theorem H.1].

On this basis, we derive (spatial) asymptotic inference framework
that was missing in [Driessen et al., 2012]. Spatial notion was
introduced by [Korteweg and Nagel, 2016].
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3 simulation results



3.1 two sdf models

We test a simple linear SDF model as in [Driessen et al., 2012]

ΨSL
τ,t(θ) =

t∏
h=1

1+ α+ rh +
∑
j

βj Fj,h

−1
τ∏

h=1

1+ α+ rh +
∑
j

βj Fj,h


(6)

and an exponential affine SDF model adapted from
[Korteweg and Nagel, 2016]

ΨEA
τ,t (θ) = exp

− t∑
h=τ

α+ log(1+ rh) +
∑
j

βj · log(1+ Fj,h)

 (7)

with (arithmetic) risk-free return r, (arithmetic) zero-net-investment
portfolio returns Fj, and parameter vector θ = (α, β).
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3.2 questions answered by simulation

For 20 vintage years, simulate typical private equity funds that each
enters and exits 15 deals within their lifetime of 15 years. Exit cash
flows are driven by simple α and βMKT factor models using realized
market returns. To analyze the following questions:

1. Is it beneficial to use vintage year portfolios (VYPs) instead of
individual funds?

2. Which SDF model performs better when we also use the
corresponding data generating process (i.e., assume correct
model specification)?

3. How is estimator precision affected by varying numbers of
vintage years and cross-sectional units?

4. Which is the optimal set of present value times T ?
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3.3 simulation results

1. Is it beneficial to use vintage year portfolios (VYPs) instead of
individual funds?
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3.3 simulation results

2. Which SDF model performs better?
4. Which is the optimal set of present value times T ?
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3.3 simulation results

3. How is estimator precision affected by varying numbers of
vintage years and cross-sectional units?

Base Big n/V Big V Big V Small V Small V
Start vintage 1986 1986 1967 1967 1986 1996
End vintage 2005 2005 2005 2005 1995 2005

#Funds per vintage 20 40 10 20 20 20
Mean βMKT 1.011 1.020 0.993 1.015 1.027 0.934
Stdv βMKT 0.187 0.133 0.263 0.227 0.232 0.418

Table: Simulation study for varying number of vintages and number of funds
per vintage. We use vintage year portfolios, the simple linear SDF with true
βMKT = 1, maximum month 180, and 500 simulation iterations.

19



3.3 simulation results (summary)

1. Is it beneficial to use vintage year portfolios (VYPs) instead of
individual funds?
Yes, β̂MKT is 1.016 (0.2) for the vintage year portfolio and 1.096
(0.376) for individual funds; with true βMKT = 1.

2. Which SDF model performs better when we also use the
corresponding data generating process (i.e., assume correct
model specification)?
Both exhibit similar small-sample bias and variance.

3. How is estimator precision affected by varying numbers of
vintage years and cross-sectional units?
Increasing the number of funds per vintage year portfolio
appears to decrease the estimator’s variance more effectively
than adding more vintage years. Bias always very similar.

4. Which is the optimal set of present value times T ?
Use all dates/quarters within the fund lifetime.
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3.4 remaining challenges

∙ Simulation results indicate high small-sample variance even for
simple data generating processes.

∙ Empirical estimation for simple two-factor models reveals
(using public q5-investment factors of [Hou et al., 2020]):

∙ very high asymptotic standard error estimates (for vintage year
portfolios),

∙ hv-block cross-validation standard errors are smaller,
∙ model selection remains challenging when confronted with a large
set of competing models.

∙ Model combination instead of model selection?
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4 model combination



4.1 model combination idea

Transform weak model ensemble to strong multi-factor model.
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4.2 why so many/weak/difficult?

∙ Why so many models?
∙ Many public market factor candidates
∙ Many potential estimators, loss functions, hyperparameters
∙ Many different proprietary private data sets

∙ Why so weak models?
∙ Sparse private equity fund data (≤ 40 vintages)
∙ Near-epoch dependency by overlapping fund cash flows
∙ Multi-factor models almost surely overfit

∙ Why model selection is difficult?
∙ Model uncertainty especially high for weak models
∙ Limited data may encourage data snooping
∙ Correct post model selection inference is generally hard
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4.3 model averaging

The weighted pricing error obtained by SDF model averaging is
defined as

ϵ
(M∗)
τ,i =

M∗∑
m=1

wm

T∑
t=1

Ψ
(m)
τ,t CFt,i (8)

with model weight wm ≥ 0 and all weights sum to one
∑M∗

m wm = 1.
The ensemble size is M∗.

∙ Forecast combination puzzle: Often wm = 1
M∗ outperforms more

’advanced’ weighting schemes.
∙ Model combination can be perceived as diversification strategy
to minimize the risk of selecting an invalid model (i.e., investing
everything in the wrong replication strategy).
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5 empirical results



5.1 coefficient averaging

Estimate four two-factor models (using linear SDF from equation 6):
MKT-RF × {SMB or HML or HDY-MKT or QLT-MKT} with

MKT-RF: MSCI Market Return Minus Risk-free Rate
SMB: MSCI Small Cap Minus MSCI Large Cap Return
HML: MSCI Value Minus MSCI Growth Return

HDY-MKT: MSCI High Dividend Yield Minus MSCI Market Return
QLT-MKT: MSCI Quality Minus MSCI Market Return

For each of these four models, we generate 2× 2× 5 estimates by
varying (i) a quadratic and last absolute deviance loss function, (ii)
equal- and fund-size-weighted cash flows, and (iii) maximum
months in {120, 150, 180, 210, 240} for T .

Finally, simply average the 4× 2× 2× 5 model coefficients.
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5.2 averaged multi-factor models

The public factor exposure of private equity

Type MKT-RF HML SMB HDY-MKT QLT-MKT
BO 1.33 (0.15) -0.15 (0.12) 0.2 (0.03) 0.3 (0.1) 0.21 (0.05)
DD 0.96 (0.09) -0.11 (0.04) 0.21 (0.01) 0.14 (0.1) 0.16 (0.05)
INF 0.71 (0.22) -0.37 (0.06) -0.33 (0.13) -0.47 (0.35) 0.36 (0.11)
MEZZ 1.08 (0.13) 0.06 (0.1) 0.14 (0.04) 0.16 (0.1) 0.06 (0.11)
NATRES 0.36 (0.27) -0.04 (0.22) -0.02 (0.22) 0.16 (0.36) 0.11 (0.17)
PD 0.96 (0.08) -0.07 (0.04) 0.16 (0.03) 0.06 (0.09) 0.15 (0.04)
RE 1.14 (0.44) -0.3 (0.16) -0.42 (0.13) -0.91 (0.15) -0.4 (0.1)
VC 1.02 (0.67) -0.61 (0.11) -0.42 (0.03) -0.75 (0.14) 0.84 (0.61)
MKT 1 0 0 0 0

Table: Multivariate five-factor models obtained by simple coefficient
averaging (with standard deviations in parenthesis).

Private equity: Preqin cash flow data. Public: MSCI style indices.
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5.3 cumulative multi-factor model returns

Did private equity outperform the public market portfolio?

2000 2005 2010 2015 2020

0
5

1
0

1
5

2
0

Date

C
u

m
u

la
ti
v
e

 R
e

tu
rn

BO

VC

MEZZ

DD

PD

INF

RE

NATRES

MKT

29



5.4 historical factor model returns

Type Annualized Return Sharpe Ratio

mean.R stdv.R mean.R-RF stdv.R-RF mean/stdv.R-RF
BO 0.152 0.195 0.125 0.196 0.641
DD 0.116 0.144 0.091 0.144 0.630
INF 0.085 0.119 0.060 0.119 0.506
MEZZ 0.120 0.162 0.094 0.162 0.581
NATRES 0.057 0.049 0.033 0.049 0.671
PD 0.113 0.143 0.087 0.143 0.610
RE 0.092 0.203 0.067 0.203 0.329
VC 0.124 0.176 0.099 0.176 0.561
MKT 0.107 0.152 0.082 0.152 0.536

Table: Annualized average returns, standard deviations (annualized by the
square root of time formula), and Sharpe ratios (i.e., the ratio of mean.R-RF
to stdv.R-RF) implied by the five-factor models (1996-01-31 to 2020-05-31).
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5.5 application: factor exposure of sample portfolio

Bottom-up (fund-by-fund) aggregation of averaged coefficients
for a sample portfolio of 100 private capital funds.
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∙ Balanced Ensemble: all valid SDF models for a given fund.
∙ Best Ensemble: subset of all valid SDF models with smallest
pricing error for a given fund.

31



6 conclusion



6.1 summary, outlook, thoughts, ideas

∙ Significant semiparametric SDF estimates for private equity
funds are hard to obtain. Asymptotic inference not very useful
when forming vintage year portfolios.

∙ Model combination is a straightforward means to form a
strong(er) SDF model from a collection of weak competitors.

∙ Conjecture: Averaging pricing errors over cash flow duration
(fund lifetime) may be general feature of an ’optimal’ SDF
estimator for non-traded cash flows.

∙ Future research: Effect of taking historical (fixed) public market
returns vs simulated scenarios in simulation study: What are
the issues? What is optimal?

∙ Future research: Analyze improved version of the
[Korteweg and Nagel, 2016] estimator (simulation-based
portfolios avoid under-identification, but compatible with
averaging pricing errors?).
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Working paper and R code
will be available on my blog

Quant-Unit.com
.

Do you have comments?
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