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ABSTRACT

In this talk, we first summarize the most common asset pricing
frameworks in incomplete markets: using the growth-optimal
portfolio as numeraire, mean-variance hedging, and local risk
minimization. On their basis, we develop a tailored quadratic
hedging framework for private equity fund cash flows. Finally, we
demonstrate how to empirically estimate these hedging strategies
via the machine-learning method componentwise L2 boosting.
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1 INTRODUCTION



1.1 OVERVIEW OF PHD THESIS CONTENTS

Stochastic Discount Factor Methods for Non-Traded Cash Flows -
The Case of Private Equity

Part I Introduction
1. Non-traded cash flows
2. Stochastic discount factors (SDFs)

Part II Numeraire portfolio methods
3. Numeraire denomination and cash flow replication [literature

review]
4. Quadratic hedging strategies for private equity fund payment

streams
Part III Semiparametric SDF methods

5. SDF approaches in private equity [literature review]
6. A spatial SDF estimator for private equity funds
7. The public factor exposure of private equity

Part IV Parametric SDF methods
8. Modeling the exit cash flows of private equity fund investments
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1.2 MOTIVATION

1. Can we replicate private equity cash flows by ”liquid alternatives”?

2. Compare SDF approaches:

Econometrics: In the semiparametric SDF paper, we incorporate
factor returns into the SDF factor construction ΨPE(F).

E
[∑

ΨPE(F) · CF
]
= 0

Financial Mathematics: Now, we use a universal SDF proxy without
factors, but use the factors to form a dynamic hedging strategy G(F).

E

[∑ CF− G(F)
1

Ψuniversal

]
= 0

Which approach is more intuitive, theoretically more valid, easier to
apply?
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1.3 SECURITY MARKET DEFINITION

Let (Ω,F ,P) be a discrete-time probability space, T ∈ N > 0, and
F = (Ft)t=0,1,...,T a filtration.

In our security market {Sz,t : z = 1, 2, . . . , Z ; t = 0, 1, 2, . . . , T}, the
underlying securities Sz are assumed to be real-valued, F-adapted,
and square-integrable processes with Sz,t ∈ [0,∞) for all z, t.

Additionally, one asset is assumed to be default-free (risk-free)
S1,t > 0 for all t.

We regard portfolios
Sδt = δt

⊤St

that are all non-negative, self-financing and finite, i.e., Sδt ∈ [0,∞)

for all t. The strategy vector is denoted by δt ∈ RN, δt is
Ft-measurable.
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1.4 PUBLIC FACTORS & PRIVATE CASH FLOWS

From the underlying securities S, we can construct
zero-net-investment factor returns

Fj,t =
Sδ,j,long
t

Sδ,j,long
t−1

− Sδ,j,short
t

Sδ,j,short
t−1

with j = 1, 2, ..., J.

Additionally, relevant public macro information is stored in so-called
predictor variables Pk,t with k = 1, 2, . . . , K.

Private equity funds are described by their cash flows CFi,t and net
asset values Vi,t with i = 1, 2, . . . ,N and t = 1, 2, . . . , T.
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2 PRICING IN INCOMPLETE MARKETS



2.1 OVERVIEW OF PRICING IN INCOMPLETE MARKETS

Incomplete markets: non-traded assets, trading frictions, asset
prices with jumps, ...

We all know: When hedging in incomplete markets one has to
sacrifice (a) perfect replication or (b) the self-financing property
(which jointly only work in complete markets).

Financial mathematics concepts for pricing in incomplete markets:

1. Numeraire denomination by Growth Optimal Portfolio (GOP)
–> [Kaplan and Schoar, 2005] PME

2. Self-financing portfolio replication by Mean-Variance Hedging
–> modified PME (mPME) of Cambridge Associates

3. Perfect portfolio replication by (Local) Risk Minimization
–> [Tausch, 2019] Quadratic Hedging & PME+ by Capital Dynamics
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2.2 REVIEW: GROWTH OPTIMAL PORTFOLIO

Definition
Growth-Optimal Portfolio (GOP):
The GOP Sδ∗t is the unique strictly positive portfolio that makes
every GOP-denoted portfolio process Ŝδt = Sδt (Sδ

∗

t )−1 a
supermartingale under the real-world probability measure P
[Bühlmann and Platen, 2003, equation 4.2]:

Ŝδt =
Sδt
Sδ∗t

≥ EP
[
Ŝδt+1|Ft

]
∀ t, δ (1)

The GOP framework requires only one trivial assumption:
Assumption: The GOP exits [Bühlmann and Platen, 2003, assumption
3.2].

Helpful additional assumption: every GOP-denominated portfolio
process is a martingale.
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2.3 REVIEW: MEAN-VARIANCE HEDGING

Mean-variance hedging in discrete-time can be described by the
following global minimization task [Schweizer, 1995]

min
c∈R,ϑ∈Θ

EP
[
(VT − c− GT(ϑ))

2
]

(2)

where Θ includes the set of all ”admissible” self-financing trading
strategies and the cumulative gain process G(ϑ) is defined as

Gt(ϑ) =
t∑

τ=1
ϑτ−1

⊤(Ŝτ − Ŝτ−1) (3)

where we use GOP-denominated asset price process Ŝt = St
Sδ∗t

to
operate in a convenient martingale setting.
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2.4 REVIEW: LOCAL RISK MINIMIZATION

∙ Local risk minimization aims at perfect replication of a given
payoff by means of a mean-self-financing strategy

∙ Expected cost of trading strategy is zero for all t
∙ Think of it as ”hedging by sequential regression”
∙ Vt = (φt−1)

⊤Ŝt + ηt

∙ Trading cost (= hedging error): EP[ηt] = 0 for all t
∙ Local risk minimization: discounted S is a semimartingale (=
martingale + adapted finite-variation process)

∙ Risk minimization: discounted S is a martingale
∙ Literature for (local) risk minimization of a payment stream
process [Moller, 2001, Pansera, 2012]
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3 QUADRATIC HEDGING FOR PEFS



3.1 SEVEN USEFUL TRICKS

We want to estimate a dynamic hedging strategy φ ∈ RT×Z tailored
for private equity fund cash flows!

1. As T× N can be large, use high-dimensional statistics
2. To reduce N, use factor returns (F) instead of single stocks (S)
3. To reduce T, use dynamic predictors (P)
4. To avoid change of measure, discount by GOP Sδ∗ = 1

ΨGOP

5. To get a tractable optimization problem, consider
mean-self-financing (LRM) instead of self-financing (MV) hedges

6. To not rely too much on NAV, use global loss criterion (at time Ti)
7. To start with zero initial investment, use zero-net-investment

factor returns (F)

E

[∑ CF− GRM(F,P)
1

ΨGOP

]
= 0
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3.2 GOP DENOMINATED VARIABLES

Given observed fund NAV Ṽ and cash flows C̃F we define

Vi,t :=
Ṽi,t
Sδ∗t

and the corresponding cumulative cash flow

Ai,t :=
t∑

τ=1

C̃Fi,τ
Sδ∗τ

The cumulative gain function associated with a given hedging
strategy is given by

Gt :=
t∑

τ=1

J∑
j=1

ξj,τ
Fj,τ − λ

Sδ∗τ
(4)

relying on the linear hedging strategy ξ

ξj,τ =
K∑

k=1

βj,k · P
(k)
τ−1 · Ṽτ−1

with trading cost λ, coefficients β, predictors P, factor returns F.
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3.3 LOSS FUNCTION

Next, the replication target of our hedging strategy is simply

Yi,t = Vi,t + Ai,t (5)

We favor the squared final hedging error loss function

Li =
(
Yi,Ti − Gi,Ti

)2 (6)

instead of the risk minimizing loss function that averages over all t.

We determine the optimal β coefficient vector based on the
empirical loss function estimate

β∗ = argmin
β

1
N

N∑
i=1

Li (β)

with β ∈ RK×J which shall be easier to estimate than φ ∈ RT×Z.
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4 COMPONENTWISE L2 BOOSTING



4.1 (COMPONENTWISE) BOOSTING IDEA

∙ Boosting is a family of machine learning algorithms that convert
weak learners to strong ones

∙ Boosting is an iterative procedure where in each step the
residual error is further minimized (”regression on error term”)

∙ In our case, the residual error is the residual hedging error
∙ In componentwise boosting in each step, we select the
”component” that reduces the residual error the most

∙ In our case, we have J× K components as each factor-predictor
pair is considered a component

∙ componentwise L2 boosting uses a quadratic loss function
∙ Boosting too many iteration yields a too strong model with a too
small (in-sample) error, you must stop early to not overfit
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4.2 BASE PROCEDURE

Select the univariate factor-predictor combination with maximal
explanatory power

ĵ, k̂ = argmin
j,k

1
N

N∑
i=1

(
ui − ĝ(j,k)i

)2
(7)

with pseudo-response variable ui and optimal univariate gain
function analogue to equation (4)

ĝ(j,k)i =

Ti∑
τ=1

β̂j,k · P
(k)
τ−1 · Ṽi,τ−1 ·

Fj,τ − λ

S∗τ
(8)

As prerequisite, estimate the optimal univariate β coefficient for
each given factor-predictor combination j, k

β̂j,k = argmin
βj,k

1
N

N∑
i=1

(
ui − g(j,k)i

)2

with g(j,k)i similar to equation 8 (just without the hat symbols).
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4.3 ITERATIVE ALGORITHM

∙ Step 1 (initialization). Start with the no hedge situation where all
β coefficients are set to zero. Application of the base procedure
yields the first function estimate for step size 0 < ν ≤ 1

f̂(0) (·) = ν · ĝ(̂j,k̂) (Y)

where the replication target from equation (5) is used as
pseudo-response variable u = Y. Set m = 0.

∙ Step 2 (update). Apply the base function to the new residuals
and update the previous function estimate

f̂(m+1) (·) = f̂(m) (·) + ν · ĝ(̂j,k̂)
(
u(m)

)
with new residual vector u(m) = Y− f̂(m) (·).

∙ Step 3 (iteration). Increase the iteration index m by one and
repeat step 2 until a stopping iteration M is achieved.
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4.3 COEFFICIENTS FOR US VENTURE CAPITAL FUNDS
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Figure: Sparse model coefficients based on stability selection for λ∗ = 2%
and S∗ = World.
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4.5 HEDGE FOR US VENTURE CAPITAL FUNDS 1992
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Figure: Sparse model replication strategy for US VC funds of vintage 1992.
Value is V, Gain is G, Cash Flow is A, and Hedging Error is calculated as
A− (G− V) = Y− G.
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5 CONCLUSION



5.1 SUMMARY

We presented our idea how to empirically apply dynamic hedging.

∙ Dynamic hedging approach theoretically more intuitive than
static semiparameteric SDF estimation

∙ GOP numeraire portfolio is unknown. How good is your
approximation? Martingale assumption very strong.

∙ Dynamic predictors increase likelihood of overfitting
∙ Even for static factors it is hard to identify significant ones (in
the semiparametric papers)

∙ componentwise boosting and stability selection are
computationally expensive

Dynamic hedging is possible but not straightforward.
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5.2 OPEN QUESTIONS

∙ In discrete time, we don’t need F-predictability of trading
strategies δ, ϑ, φ in a unique manner (before/after rebalancing)?

∙ Closedness of the investment opportunity set GT(Θ) in L2(P): in
other words, every payoff H is attainable?

∙ Why (sometimes) not discount H in Mean-Variance Hedging?
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WORKING PAPER AND R CODE
WILL BE AVAILABLE ON MY BLOG

QUANT-UNIT.COM
.

DO YOU HAVE COMMENTS?
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