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Figure and Table legends

• Figure 1: Visualization of fund cash flows and valuations. [In the left
chart, we can observe three entry events, but the exit event (d3, D3)
is right-censored. The right chart illustrates an intermediate valuation
V1 (t) for the sale cash flow (d1, D1).]

• Figure 2: Empirical distribution functions of dependent variables. [Kaplan-
Meier estimate of the survival function for the Timing variable in the
left plot and empirical cumulative distribution function (ECDF) for
the entry-to-exit Multiple variable in the right plot.]

• Figure 3: Monte Carlo simulation. [The example compares the cash
flows associated with four generic VC funds. The empirical CDF equiv-
alents of equation (6) illustrate varying cash flow risk profiles when the
number of fund holdings shifts from 3 (in the left charts) to 15 (in the
right charts) and when deal ages shift from 2 (in the top charts) to 8
(in the bottom charts)]

• Table 1: Dataset summary. [Entries and exits per year for BO and VC
dataset.]

• Table 2: Parameter and coefficient estimates of the Timing regres-
sion. [Three distinct sets of covariates (a - c) are tested for each fund
type. The standard errors (in parentheses) are obtained from the cor-
responding Hessian matrix.]

• Table 3: Parameter and coefficient estimates of the two-part Multiple
regression. [The default probability π0 is estimated by a logit model,
and the Gamma distribution GY is specified by parameters µ, σ. The
resampling procedure is iterated 1,000 times for each fund type. The
estimates are mean and standard deviation (in parentheses) that are
naturally estimated within the resampling based methodology.]

• Table 4: Monte Carlo simulation example. [Cash-Flow-at-Risks with
an infinite horizon (i.e., quantile of final fund multiple) for our VC
fund example. VC funds with more deals and longer realized holding
periods (simply called age) are considered safer by our model.]

• Table 5: Deal- vs. fund-level model comparison. [Appropriateness of
our deal-level model and the fund-level model of Buchner (2017) in the
risk management context.]
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Abstract

Risk perception in private equity is notoriously difficult, as the cash flow
patterns associated with private capital funds are not well understood on
the underlying deal level. This paper analyzes the realized exit cash flows of
individual portfolio companies in a joint modeling framework that describes
both the exit timing and exit performance. Particularly we choose an exit
timing model suited for the interval-censored nature of private equity deal
data and an exit (performance) multiple approach appropriate for the high
numbers of company defaults observed in private equity. The corresponding
parametric joint model is estimated using maximum likelihood for a Buyout
and Venture Capital dataset and applied within a Monte Carlo simulation
example to demonstrate the suitability of our approach in the risk man-
agement context. Here especially undiversified private equity fund investors
benefit from the improved insights offered by risk analysis tools that can
incorporate detailed company-level information.

Keywords

Private equity, Exit behavior, Cash flow risk simulation, Buyout, Venture
Capital.

Key messages

• This paper develops a deal-level model for the exit cash flows of private
equity funds.

• The model jointly describes exit timing and performance of portfolio
companies.

• Deal-level data for Buyout and Venture Capital funds are used for
empirical estimation.

• A Monte Carlo simulation example analyses risk management applica-
tions.

Title

Modeling the exit cash flows of private equity fund investments
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1 Introduction

Private capital funds control financial assets with a cumulative valuation of
$4.99 trillion (as of September 2019; Source: Preqin). Fund investors natu-
rally ask: (i) what will happen with these assets in the future, or, on a small
scale, (ii) what is the economic hazard associated with a particular private
equity fund stake? Fundamentally, (iii) how much cash will be realized and
(iv) when? These questions arise because a Private Equity Fund (PEF) is
generically constructed as a limited partnership with a bounded lifetime that
is not tradable on public markets1. The fund manager receives an unfunded
upfront commitment from fund investors and then controls the timing of
all discretionary investment and divestment cash flows. Fund investors can
consider these cash flows as the outcome of exogenous random variables.

This article follows the perception that a universal risk measurement
methodology tailored for the illiquid nature of PEF investments shall oper-
ate on the underlying deal level. Particularly, undiversified fund investors
benefit from company-level models that achieve to include very granular
(deal-level) information in addition to common fund-level characteristics.
However, little is known about the dynamic behavior of single private eq-
uity fund investments. Especially, the interaction between holding period
and total return that eventually determines the cash flows to investors is
not well grasped yet. The empirical and theoretical private equity litera-
ture lacks comprehensive deal-level concepts that jointly describe both (i)
the fund manager’s endogenous timing of cash flows and (ii) the risk and
return of the underlying fund holdings. These highly related aspects are,
unfortunately, often studied in quite fragmented approaches.

To better understand the exit behavior of private equity fund investments
on portfolio-company-level, we analyze the connection between (i) exit tim-
ing and (ii) return of underlying fund assets by two parametric models (for
the marginal distributions) linked by a copula. Additionally, the exit per-
formance model is conditioned on exit timing. The exit timing regression
is based on a parametric multiplicative hazard rate formulation adapted for
time-variant covariates. The return multiple regression employs a so-called
two-part or hurdle model to account for the zero-heavy nature of historically
observed PEF deal returns (Min & Agresti, 2002). In summary, the depen-
dency between exit timing and exit multiple is generated by three means: (i)
using the same set of public market covariates in both marginal models, (ii)
using exit timing as an independent variable in the exit multiple regression,

1Kaplan & Strömberg (2009) describe the nature and economics of PEFs in more detail.
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and (iii) using a copula to model possible remaining dependencies.
The access to a proprietary deal-level dataset of Buyout (BO) and Ven-

ture Capital (VC) fund investments allows our modeling idea’s empirical
application. First, the aforementioned exit timing and return multiple re-
gression models are estimated by maximum likelihood for both datasets.
Here the asset-level granularity permits the inclusion of many covariates that
are not available in fund-level regressions. Second, the estimated models are
applied in a Monte Carlo simulation example that, with its undiversified
PEF portfolio setting, indicates the advantages of deal-level over fund-level
cash flow simulation approaches.

The article is organized as follows: Section 2 reviews related literature.
Section 3 presents a joint model for exit timing and exit return multiple that
can be estimated by maximum likelihood. Section 4 reports the empirical
results of this regression approach for a BO and VC dataset. Section 5
discusses a risk management application of the model estimates in a Monte
Carlo simulation example. Section 6 finally concludes.

2 Related literature

2.1 Empirical private equity analyses

Published empirical analyses on deal level focus either on the exit route or
on the asset performance of private equity investments. Unfortunately, joint
empirical analyses of both aspects only exist as unpublished working papers
(Das et al., 2002; Ljungqvist & Richardson, 2003).

The realized exit routes of VC fund investments (e.g., initial public of-
fering, trade sale, liquidation) are analyzed by Giot & Schwienbacher (2007)
and Félix et al. (2014) utilizing competing risk models. Jenkinson & Sousa
(2015) employ a multiplicative hazard model and a trinomial logistic re-
gression for a BO dataset. Cumming (2008) and Schmidt et al. (2010) use
multinomial logit models in similar VC and BO studies. Cumming et al.
(2014) survey the firm-level exit performance of governmental and indepen-
dent VC investments in Europe. All exit route regressions solely incorporate
static, time-invariant covariates.

The market timing abilities of PEF managers are analyzed by Jenkinson
et al. (2018) in the context of EBITDA market multiple expansion for both
the entry and exit dates of fund investments. Gredil (2018) examines fund
managers’ abilities to predict unfavorable public market returns following
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deal exits2.
The return and risk of VC companies are studied by Cochrane (2005)

and Korteweg & Sorensen (2010). They develop sample selection correction
methodologies3 that allow the calculation of the amended return of VC in-
vestments from observed financing round valuation data. Both approaches
rely on log-normally distributed returns. The value creation of BO firms is
examined by Guo et al. (2011) and Valkama et al. (2013). Here the return
drivers of BO investments are identified in detailed deal-level regressions.

2.2 Stochastic private equity models

The first private equity fund-level model that primarily relies on Gaussian
stochastic processes is introduced by de Malherbe (2004). Buchner (2017)
utilizes a similar framework to distinguish between fund-level (i) market, (ii)
liquidity, and (iii) cash flow risk. Buchner et al. (2010) propose a stochastic
model on the typical cash flow dynamics of private equity funds that solely
relies on observable cash flow data. Conclusive from a diversified portfolio
perspective, these approaches inherently tend to neglect asset-level charac-
teristics.

Further, there exist some structural deal-level models that are designed
to address particular private-equity-related questions. Bongaerts & Charlier
(2009) estimate the capital requirements for private equity investments under
Basel II. Braun et al. (2011) quantify the risk appetite of BO fund managers.
Escobar et al. (2011) examine the portfolio optimization problem for private
equity investors. Dong et al. (2012) assess the credit risk associated with
a portfolio of private infrastructure projects. Lahmann et al. (2016) focus
on the stepwise debt reduction associated with BO investments. Each pa-
per deals with private equity specific issues; however, the general structural
(default) framework applied therein is explicitly developed rather for public
debt than for private equity. The biggest structural drawback associated
with these approaches is their assumption of a deterministic exit timing (at
bond maturity when no default happens before).

2.3 Structural vs reduced form approach

Modeling private equity deal exits is similar to modeling loan defaults. In
both instances, we are interested in an event time (of exit and default, re-

2We thank an anonymous referee for mentioning the connection to the market timing
literature.

3Their sample selection correction methodologies, that model the probability of observ-
ing further deal valuations, could be theoretically used to model exit timing.
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spectively) and the cash flow that results at that time. The credit risk
literature distinguishes between structural and reduced form modeling ap-
proaches. Jarrow & Protter (2004) outline their differences from an infor-
mation based perspective: ‘Structural models assume complete knowledge
of a very detailed information set, akin to that held by the firm’s managers.
[...] In contrast, reduced form models assume knowledge of a less detailed
information set, akin to that observed by the market’. As a consequence,
reduced form model formulations naturally arise in some incomplete (par-
tial/imperfect/latent/noisy) information settings (Giesecke, 2006). Jarrow
(2009) further points out that ’Reduced form models take as exogenous both
the firms default time and its recovery rate process [...] this results in sim-
plified computational procedures’.

We suggest that reduced form models constitute a fruitful alternative to
existing structural PEF models since incomplete information settings can be
assumed characteristic for private equity investments. Additionally, struc-
tural modeling of PEF deals may be exacerbated by complex and dynamic
capital structures and endogenous default thresholds; see Leland & Toft
(1996) for a seminal public market case, and Forte & Lovreta (2012) for a
more recent approach. These traditional endogeneity concerns may be fur-
ther aggravated by fund manager incentives that arise in typical PE settings,
i.e., existing fee agreements or fundraising for new funds could influence the
exit behavior (Robinson & Sensoy, 2013; Barber & Yasuda, 2017; Hüther
et al., 2020). Therefore, structural models need to incorporate rules that
formalize the endogenous bankruptcy, trade sale, and IPO decision making.
Generally, reduced form models strive to describe the data but not necessar-
ily the underlying cause and effect phenomenon like structural approaches.
Thus, reduced form models for PE deals are computationally cheaper than
structural models since they avoid unnecessary overhead like simulating in-
termediate deal value paths between entry and exit.

In summary, considering deals as ’black boxes’ should be usually easier,
faster, and more realistic for a typical fund investor than relying on structural
modeling. We can regard the model proposed in the following section 3 as
reduced from approach on deal level.

3 Parametric exit dynamics model

3.1 Simple probability space

Let (Ω,F ,P) be a filtered probability space in continuous-time (satisfying
the usual hypotheses) with sample space Ω, F a σ-algebra of subsets of Ω,
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Figure 1: Visualization of fund cash flows and valuations. In the left chart,
we can observe three entry events, but the exit event (d3, D3) is right-
censored. The right chart illustrates an intermediate valuation V1 (t) for
the sale cash flow (d1, D1).

and the real world probability measure P. The corresponding filtration is
given by (Ft)t∈[0,T ∗] and F = FT ∗ for simplicity. All subsequently defined
random variables are assumed to be F -measurable.

We consider a private equity fund that holds n ∈ N company invest-
ments at a given point in its lifetime t ∈ [0, T ∗]. Each company investment
(deal) is characterized by its current net asset value Vi,t ≥ 0 and the initial
entry event (ci, Ci) where ci denotes the entry date of the ith investment
and Ci > 0 denotes the purchase price of the ith asset with i = 1, 2, ..., n.
We are now interested in a joint statistical model for the exit event (di, Di)
where di denotes the exit date and Di ≥ 0 denotes the sale price of the ith
company. To incorporate additional information into our regression analysis
we introduce the covariate random vector Xi,t ∈ Rm that can contain e.g.,
public market information or company details. Since we know that the fund
holds n investments at time t it follows ci < t < di for all i = 1, 2, ..., n. To
assure ci < di we construct the exit timing by di = ci +Ti where Ti is a pos-
itive random variable. Figure 1 visualize the probability space components
(c, C), (d,D), and V .

3.2 Marginal distributions of Multiple and Timing

The dependent variables of our joint regression approach are defined as exit
Multiple variable Yi = Di/Vi,t and the exit Timing variable yi = di − t.
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Due to the semicontinuous (zero-heavy) nature of the Multiple Y ∈ R≥0,
our two-part models splits the univariate cumulative distribution function
(CDF) and probability density function (PDF) into a point mass at zero and
an absolutely continuous part (Min & Agresti, 2002)

FY (Ȳ ) = P
[
D
V (t) ≤ Ȳ |Ft

]
= π0(X)1{Ȳ≥0} + [1− π0(X)]GY

(
Ȳ |X, ξY

)
fY (Ȳ ) = δ

δȲ
FY (Ȳ ) = π0(X)1{Ȳ=0} + [1− π0(X)]gY

(
Ȳ |X, ξY

)
where the default probability π0(X) is conditioned on some covariates X,
and 1{} denotes the indicator function. GY and gY represent a continuous
CDF and PDF, respectively, that are conditioned on vectors of covariates
X and parameters ξY . Further the Timing y ∈ R>0 is specified by the
conditional survival model

Sy (ȳ|t) = P [d > t+ ȳ|Ft] =
Sy (t+ ȳ|X, ξy)
Sy (t|X, ξy)

where Sy denotes an absolutely continuous survival function with covariate
vector X and parameter vector ξy. Due to interval censoring, introduced by
the quarterly reporting practice common in the private equity industry, the
Timing density function is linearly approximated by rectangle probabilities

fy(ȳ|t) = Sy (ȳ|t)hy (t+ ȳ) ≈ Sy (ȳ −∆|t)− Sy (ȳ|t)
∆

where hy is the corresponding hazard function and ∆ = 0.25 for quarterly
observations.

3.3 Bivariate copula model

We define the bivariate distribution in terms of the distribution function for
Y and survival function for y

FY y(Ȳ , ȳ|t) = P
[
D

V (t)
≤ Ȳ , d > t+ ȳ

∣∣∣∣ t,Ft

]
Although Shi et al. (2015) favor a parametric copula model over a straight-
forward conditional probability decomposition in a similar insurance setting,
we opt to combine both approaches: First we include Timing in the pre-
dictor set d ∈ X for both complementary two-part models, π0 and GY , and
use Fd-information for all covariates X. Next, we assume conditional in-
dependence between the Multiple and Timing model while allowing for
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dependency in their residuals via the parametric copula function Cop(u, v).
In this case, the CDF is constructed as

F0 := FY y(Ȳ , ȳ|t, Ȳ = 0) = 1− Sy (ȳ|t)
F1 := FY y(Ȳ , ȳ|t, Ȳ > 0) = Cop[GY (Ȳ ), Sy (ȳ|t)]
FY y := FY y(Ȳ , ȳ|t, Ȳ ≥ 0) = 1{Ȳ=0}F0π0 + 1{Ȳ >0}[π0 + (1− π0)F1]

and the corresponding PDF is given by

f0 := fY y(Ȳ , ȳ|t, Ȳ = 0) = fy(ȳ|t)π0

f1 := fY y(Ȳ , ȳ|t, Ȳ > 0) = gY (Ȳ ) · fy(ȳ|t) · cop[GY (Ȳ ), Sy (ȳ|t)]
fY y := fY y(Ȳ , ȳ|t, Ȳ ≥ 0) = 1{Ȳ=0}f0 + 1{Ȳ >0}f1

with copula function derivative

cop(u, v) =
δ2Cop(u, v)

δuδv

3.4 Model specification

For the exit Timing regression, we apply Cox (1972)’s multiplicative haz-
ard modeling idea to specify a parametric Weibull survival function. Our
approach allows the integration of exogenous, time-variant variables into
the exit Timing regression, which is in contrast to the analyses of Giot &
Schwienbacher (2007), Félix et al. (2014), and Jenkinson & Sousa (2015) fo-
cusing on internal, time-invariant covariates to examine empirical exit routes
in VC and BO. The survival model construction and associated likelihood
function are described in 3.5.

According to our theoretical framework, just one single distribution cash
flow Di and one single contribution cash flow Ci per asset is scheduled.
However, in real datasets, multiple investment and divestment cash flows can
be observed for a given company. To account for this practical consideration,
we redefine the multiple regression’s dependent variable as

Yi,t =
Ďi(t)

Vi(t) + Či(t)
≥ 0 (1)

Here Či(t) resp. Ďi(t) represents the sum of all contribution resp. distribu-
tion cash flows occurring after t:

Či(t) :=
∑
τ

Ci,τ1{t<τ} and Ďi(t) :=
∑
τ

Di,τ1{t<τ}

10



The corresponding marginal two-part model consists of a logistic regression
for π0 and a generalized linear model relying on a Gamma distribution for
GY , which are adopted from the R package GAMLSS introduced by Rigby
& Stasinopoulos (2005).

To detect further dependency between both marginal models a 180-
degree rotated Joe copula is tested

CopJoe(u, v; θ) = 1− [uθ + vθ − uθvθ]1/θ

with parameter θ ≥ 1.

3.5 Exit timing: Parametric multiplicative hazard rate model

The survival function describing the exit timing of private equity fund invest-
ments is given by S (t) = P [T > t |Ft ] with total holding period T = d− c,
entry date c, and exit date d. Let the point process N

(d)
i,j (t) = 1{di≤t} (with

indicator function 1{}) model the exit timing Ti,j of the ith company be-
longing to the jth fund in line with the intensity based definition of Bremaud
(1981, II.3)

E
[∫ ∞

0
dN

(d)
i,j (u)

∣∣∣∣Ft

]
= E

[∫ ∞
0

hi,j (u|X (u)) du

∣∣∣∣Ft

]
The associated random intensity process is characterized according to An-
dersen & Gill (1982)

hi,j (t |X (t)) = h0 (t)Z
(cens)
i,j (t) exp

(
β>X (t)

)
with Ft-measurable censoring process

Z
(cens)
i,j (t) = 1{t > ci,j}1{t≤ di,j}

and Ft-measurable covariate process X (t) introduced in section 3.1. Fur-
ther, we assume Weibull distributed exit Timings, i.e., a parametric model
for the base hazard function h0 (t). The corresponding Weibull cumulative
hazard function is given by a simple closed form expression

H
(wb)
0 (t |ξy ) =

∫ t

0
h

(wb)
0 (u |ξy ) du =

(
t

scalewb

)shapewb

with parameter vector ξy = (shapewb, scalewb).
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The survival function for a parametric Cox model with time-variant co-
variates is calculated by integrating over the multiplicative intensity process

SCox (t) = exp

(
−
∫ t

0
h0 (u |ξy )Z

(cens)
i,j (u) exp

(
β>X (u)

)
du

)
(2)

To account for the quarterly reporting practice of PEFs, we apply the fol-
lowing full likelihood approach to estimate the parametric Cox model with
(i) time-variant covariates, (ii) an interval-censored data structure, and (iii)
possible final (i.e., nonrandom) right-censoring

L (β, ξy |T,X) =

J∏
j=1

[ nj∏
i=1

A(1−Ri,j)BRi,j

]
(3)

with interval-censored part

A = SCox

(
T

(L)
i,j

)
− SCox

(
T

(R)
i,j

)
and right-censored part

B = SCox

(
T

(R)
i,j

)
where the left and right boundaries of the exit Timing interval are given by

T
(L)
i,j = d

(L)
i,j − c

(L)
i,j and T

(R)
i,j = min

(
fi,j , d

(R)
i,j

)
− c(L)

i,j

with quarterly left and right boundaries defined according to

c
(L)
i,j < ci,j < c

(R)
i,j and d

(L)
i,j < di,j < d

(R)
i,j

The final observation time for a given asset is denoted by fi,j with corre-
sponding right censoring indicator

Ri,j = 1{
fi,j<d

(R)
i,j

}
This allows us to construct the adjusted likelihood for non-informative right-
censoring (Aalen et al., 2008, section 5.1.2). Here nj gives the number of
investments for the jth fund and j = 1, 2, . . . , J counts the number of distinct
funds in the dataset.

Further, we assume a step function for the dynamic covariate process
X (t) since we have to integrate over the history of this process in the course
of calculating the survival function. In the maximum likelihood estimation
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procedure for the Cox model with a Weibull hazard rate function we compute
a quarterly time-discrete approximation of equation (2), i.e.,

S
(wb)
Cox (t) = exp

− ∑
q:tq≤t

exp
(
β>X (tq)

)
∆Htq

 (4)

where the cumulative hazard function difference replaces the integral

∆Htq =

∫ tq

tq−1

Z
(cens)
i,j (u)h

(wb)
0 (u |ξy ) du

= Z
(cens)
i,j (tq)

[
H

(wb)
0 (tq |ξy )−H(wb)

0 (tq−1 |ξy )
] (5)

with quarter start date tq−1 and quarter end date tq. The covariate infor-
mation X(tq) is here assumed to be relevant for the time in between tq−1

and tq.

4 Data & model estimation

4.1 Deal-level dataset

For the empirical application of the joint regression model, we use deal-level
data (stemming from a fund-of-fund program4) split into a BO and a VC
subset. All investments had been entered between 1998-09-30 and 2016-12-
31 (cf. table 1). The underlying companies originate from 144 BO and 98 VC
funds. Although these 242 PEFs cover only a relatively small portion of the
total private equity fund universe, the number of deals in our dataset is more
extensive than in the datasets of Schmidt et al. (2010); Guo et al. (2011);
Braun et al. (2011); Valkama et al. (2013); Félix et al. (2014). Naturally,
some commercial deal-level databases like CEPRES, as used by Buchner
(2016), or VentureXpert, as used by Giot & Schwienbacher (2007), contain
more deals and cover a more extended period than our dataset.

The empirical distributions of both dependent variables are visualized in
figure 2. For both fund types, the maximum holding period is approximately
15 years, and at least 10% of the Multiple observations are precisely zero.
As of 2016-12-31, the entire fund-of-fund program exhibits an MSCI World
KS-PME ratio of 85%. When compared to all fund-level TVPIs in the
Preqin universe, 13% of the underlying funds are top-quartile funds, 18%

4The proprietary dataset is provided by AssetMetrix GmbH, a service provider for
private capital investors and fund managers.
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are in the second quartile, 22% are in the third quartile, and 47% are in
the fourth quartile. Both public and private market benchmarks indicate
that the returns in our deal sample are likely below average. However,
missing some upward potential in multiple parameter estimation might
not be overly problematic when focusing on (downward) risk assessment.

The Multiple regression dataset excludes all non-exited observations,
and all companies entered after 2009-12-31 to mitigate possible sample se-
lection bias. Allowing exit observations of recently entered companies to
infiltrate the Multiple analysis dataset, causes (upward) biased estimates
if there prevails a significant (negative) relation between holding period and
exit performance. However, precisely this presumed connection is one of
the subjects under investigation in this paper. As conjectured in Gredil
(2018), we likewise expect fast deal exits (so-called quick-flips) to come
with an extraordinarily good deal performance so that the fund manager
receives performance fees (so-called carry). On the other hand, reasonably
bad performing deals are held for longer times to harvest (at least) some base
management fees. Ignoring these considerations and including also recently
entered exits in the Multiple dataset, most likely, leads to overly optimistic
risk and return assessments. Finally, the cut-off date 2009-12-31 is chosen
as a discretionary compromise between sample selection concerns and data
comprehensiveness, since with a dataset starting in the late 1990s, basically
all deals must be excluded when solely deals of completely liquidated fund
vintages are included in the Multiple regression.

4.2 Explanatory variables

In both marginal regression models, we focus on (i) public market and (ii)
timing-related covariates. Public market predictors are especially useful for
stress testing in the risk management context. Timing-related covariates are
interesting as this paper wants to investigate the connection between exit
timing and performance.

The common public market variables, shared by both marginal analyses,
cover high yield spreads5 and public equity performance6. The Timing
regression is not capable of incorporating holding period (t− c) and time to
exit (d− t) as independent variables since they are directly derived from the

5We use the BofA Merrill Lynch US High Yield Option-Adjusted Spread
(https://fred.stlouisfed.org/series/BAMLH0A0HYM2).

6In the Timing regression we incorporate monthly Public Equity Returns (i.e.,
Indext+1

Indext
−1) and in the Multiple regression we use same-horizon Public Equity Multiples

(i.e., Indexd
Indext

) both calculated with the MSCI World Total Return Index in US Dollar.
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Table 1: Dataset summary. Entries and exits per year for BO and VC
dataset.

Entries Exits
Year BO VC BO VC

1998 15 13 0 0
1999 42 125 2 0
2000 141 457 1 13
2001 72 238 28 77
2002 202 307 63 102
2003 99 277 58 154
2004 150 317 73 135
2005 153 233 84 185
2006 188 211 113 173
2007 149 136 130 179
2008 149 128 69 177
2009 65 114 82 168
2010 134 122 96 179
2011 138 135 96 190
2012 143 99 105 168
2013 107 81 105 175
2014 84 52 130 176
2015 87 19 158 141
2016 73 3 149 144

Observed exits (before 2016-12-31) - - 1,542 2,536
Censored exits (after 2016-12-31) - - 649 531

Observed exits (entry before 2009-12-31) - - 1,231 2,179
Thereof with unique company ID - - 1,108 1,836
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Figure 2: Empirical distribution functions of dependent variables. Kaplan-
Meier estimate of the survival function for the Timing variable in the left
plot and empirical cumulative distribution function (ECDF) for the entry-
to-exit Multiple variable in the right plot.

dependent variable. Instead, the fund age at entry date serves as the only
time-related Timing covariate.

We just consider one deal-specific predictor variable: the deal-level Resid-
ual Value to Paid In (RVPI), defined as value proxy to cumulative contri-
butions ratio (V/C). The RVPI ratio must be regarded as time-variant
internal variable (Kalbfleisch & Prentice, 2002, section 6.3.2) and therefore
is excluded from the set of possible Timing predictors. Other candidates of
deal- or fund-specific covariates can be found in the articles cited in section
2, but are not tested in our rather methodological than empirical paper.
Similarly, potential public risk factors for PE investments are summarized
by Korteweg (2019).

4.3 Estimation procedure

4.3.1 Timing

The Timing regression includes all exited and right-censored observations.
We explicitly keep multiple entries for a company with numerous fund in-
vestors since each fund manager endogenously determines the entry and
exit Timing7. Thus, the estimation procedure for the marginal Timing

7The assumption of an endogenous exit decision is just valid for non-syndicated deals.
This seems to be true for 81% of our companies with multiple fund investors, as these
company investments show distinct entry and/or exit dates.
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model, i.e., maximizing equation (3), is relatively straightforward. However,
it is computationally more intensive than a parametric multiplicative hazard
rate regression with only time-invariant covariates since it involves the nu-
merical integration (stepwise approximation) over the hazard rate function
in equation (4). The numerical maximum likelihood optimization for our
Cox Weibull model is performed in R by the function optimx(... , method=
”nlminb”) from the optimx package.

4.3.2 Multiple

The estimation procedure for the marginal Multiple model is more intricate
since we have to account for (i) the longitudinal data structure and (ii) eco-
nomically negligible observations. Unfortunately, standard panel model esti-
mators are not applicable since they commonly use a semi-parametric speci-
fication combined with a Heteroskedasticity- and Autocorrelation-Consistent
(HAC) estimator for the residuals. To estimate our fully parametric Multi-
ple model in a similar manner, we need to specify an auxiliary parametric
model for the within company autocorrelation. However, to avoid numer-
ical convergence problems8 and misspecification9, we alternatively propose
a simple one-per-company resampling scheme to resolve the Multiple au-
tocorrelation issue. In each step of our iterative procedure, exactly one
observation per company identifier is randomly selected to enter the likeli-
hood optimization. Sampling by company identifier also resolves the issue
when multiple funds invest in the same company.

Moreover, observations with a deal-level RVPI of less than 10% are ex-
cluded within the resampling algorithm since we regard them as economically
irrelevant. These small RVPI situations usually arise at the end of deal life-
times due to (i) distressed deals which got significantly written down and,
more importantly, (ii) after big partial sales of almost all company shares,
which arguably constitute the economically relevant exit events. We assume
that these small RVPI observations (occurring after the economic exit date)
add more noise than information, as fund managers seem to come up with
sloppy deal appraisals in these situations, i.e., the remaining deal valuations
and future cash flows seem not to be related in an economically meaningful
way anymore. The exclusion of these cases is just one possible RVPI related
weighting method and could be replaced by more elaborate approaches, e.g.,
weighting the likelihood function by the RVPI in the optimization procedure.

8Even a simple AR(1) autocorrelation model always terminated without convergence.
R code: gamlss::re(random=∼predictor|ID, correlation=nlme::corARMA(p=1,q=0)).

9Economically negligible observations exacerbate correct specification.
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The choice of a resampling based estimation method is associated with
high computational costs. However, it enables applying an informative
yet straightforward marginal Multiple model and simultaneously provides
resampling-based standard error estimates (free of charge). The general-
ized linear models for π0 and GY are separately estimated by the functions
gamlss(..., family = BI(mu.link = logit)) and gamlss(..., family = GA)),
resp., from the R package GAMLSS (Rigby & Stasinopoulos, 2005).

4.3.3 Copula

For the copula estimation, we use the inference functions for margins ap-
proach of Joe & Xu (1996). In this procedure, first, the marginal models
are estimated from separately maximized univariate likelihoods. Here, the
survival model for Timing incorporates non-exited investments in contrast
to the Multiple model. The second step examines the dependence param-
eter’s significance. The 180-degree rotated Joe copula derivative is obtained
by the function BiCopPDF(..., family = 16) from the R package VineCopula.

4.4 Parameter estimates

4.4.1 Timing

The coefficient estimates associated with the multiplicative hazard rate model
from appendix 3.5 explain the impact of (i) public equity returns, (ii) high
yield spreads, and (iii) the fund age at entry on the exit Timing of individual
fund investments (cf. table 2).

Favorable public market conditions, i.e., high public equity returns and
low high yield spreads, and a high fund age at entry date result in faster
exit Timings. The corresponding Akaike Information Criterion (AIC) val-
ues indicate that the relative quality of Timing models with covariates is
superior to a Weibull distribution model without covariates for both BO and
VC datasets, since models with minimum AIC are to be preferred10. For the
BO subset, the minimum AIC model (a) contains all three covariates, but
for the VC subset, the minimum AIC model (b) contains just public equity
returns and the fund age at entry as covariates.

In summary, the public market related estimates indicate that high yield
spreads posses more predictive power for the BO set, and public equity
returns posses more predictive power for the VC set. The fund age at entry

10The AIC is calculated as AIC = 2k−2 ln
(
L̂
)

where k gives the number of parameters

used in a given regression and L̂ denotes the maximized likelihood value.
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Table 2: Parameter and coefficient estimates of the Timing regression.
Three distinct sets of covariates (a - c) are tested for each fund type. The
standard errors (in parentheses) are obtained from the corresponding Hes-
sian matrix.

Timing estimates Buyout Venture Capital

Variables (a) (b) (c) (a) (b) (c)

Public equity return 1.892 2.478 - 5.201 5.169 -
(1.084) (0.959) - (0.756) (0.775) -

High yield spread -3.071 - -3.588 0.651 - -0.43
(1.076) - (1.051) (0.674) - (0.67)

Fund age (at entry) 0.086 0.088 0.085 0.036 0.036 0.037
(0.014) (0.014) (0.014) (0.01) (0.01) (0.01)

Scale (Weibull) 6.44 7.221 6.261 7.554 7.355 6.977
(0.308) (0.19) (0.285) (0.269) (0.165) (0.24)

Shape (Weibull) 1.651 1.654 1.652 1.474 1.474 1.482
(0.034) (0.034) (0.034) (0.269) (0.165) (0.24)

AIC (including covariates) 12,598 12,604 12,599 21,058 21,057 21,103
AIC (without covariates) 12,647 12,647 12,647 21,113 21,113 21,113

effect is highly significant for both fund types; however, the magnitude of
this effect is stronger for the BO set.

4.4.2 Multiple

The coefficient estimates obtained for the two-part model introduced in sec-
tion 3 explain the impact of (i) public market, (ii) private (proxy) valuation,
and (iii) exit-timing-related covariates on the exit Multiple of individual
fund investments (cf. table 3).

Favorable public market conditions, i.e., now a high public equity mul-
tiple and a low high yield spread, lead to high Multiple estimates in both
sub-models since the signs of the public equity multiple coefficients are pos-
itive and the signs of the high yield spread coefficients are negative for π0

and µ(GY ). Here π0 denotes the probability of default, i.e., a zero Multi-
ple, and µ(GY ) represents the Gamma distribution mean. Unsurprisingly,
low company valuation proxies, when compared to the initial investment
amount, increase the probability of default. The time-related covariates are
(historical) holding period and (future) time-to-exit. For both BO and VC,
longer holding periods decrease the probability of default π0, but negatively
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Table 3: Parameter and coefficient estimates of the two-part Multiple
regression. The default probability π0 is estimated by a logit model, and
the Gamma distribution GY is specified by parameters µ, σ. The resampling
procedure is iterated 1,000 times for each fund type. The estimates are mean
and standard deviation (in parentheses) that are naturally estimated within
the resampling based methodology.

Multiple estimates Buyout Venture Capital

Covariates 1− π0 µ(GY ) σ(GY ) 1− π0 µ(GY ) σ(GY )

Intercept 1.551 0.846 -0.083 1.141 0.671 0.378
(0.144) (0.080) (0.034) (0.106) (0.108) (0.020)

Holding period 0.122 -0.048 -0.035 0.134 -0.003 -0.030
(0.033) (0.015) (0.014) (0.023) (0.014) (0.009)

Time to exit - -0.041 0.086 - -0.39 0.051
- (0.024) (0.009) - (0.019) (0.005)

RVPI - 1 (deal-level) 0.818 - - 0.262 - -
(0.186) - - (0.067) - -

Public equity multiple - 1 1.218 0.720 - 0.962 0.701 -
(0.158) ( 0.125) - (0.102) (0.167) -

High yield spread -4.275 -3.763 - -6.176 -4.409 -
(1.927) (1.012) - (1.399) (1.688) -

Link function logit log log logit log log

AIC (including covariates) 935 2,775 2,775 1,988 2,409 2,409
AIC (without covariates) 979 2,923 2,923 2,058 2,525 2,525

affect both the non-default Multiple mean µ(GY ) and variance-related
term σ(GY ). For VC, the holding period effect on µ(GY ) is not statistically
significant. For both BO and VC, high future time-to-exits decrease µ(GY )
but increase σ(GY ).

As we use log-link functions for µ and σ, µ(GY ) = exp(β>µX) and

σ(GY ) = exp(β>σ X) where βµ, βσ denote the coefficient estimates displayed
in table 3. The variance of the continuous Gamma distribution that models
the non-default Multiple Y + > 0 is defined as Var(Y +) = σ(GY )2 ·µ(GY )2.
The default probability is calculated in the logit model as π0 = 1−o(1+o)−1

with o = exp(β>π X).
The AIC values for the zero and continuous part of the Multiple model

indicate that the relative qualities of the full covariate regressions are supe-
rior to their corresponding intercept only equivalents for both BO and VC
datasets.
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4.4.3 Copula

The 180-degree rotated Joe copula parameter estimates are 1.135 (0.018) for
the BO set and 1.101 (0.015) for the VC set (with resampling based standard
errors in parentheses). As a parameter estimate of θ = 1 implies conditional
independence between the marginal Multiple and Timing models, the es-
timates suggest that we require a small copula-induced correction of their
collective behavior (for both BO and VC).

A statistical significant parameter estimate θ > 1 for the 180-degree ro-
tated Joe copula lets our joint model generate more (extremely) small Mul-
tiples for (extremely) large Timing realizations as compared to a bivariate
uniform distribution. As a result, our copula model displays the propensity
to produce very long holding periods for bad performing deals, as outlined
in Gredil (2018). Therefore, Multiple estimates for shorter holding periods
will be larger than in the conditionally independent case.

5 Monte Carlo model and discussions

5.1 Portfolio aggregation

Our exit dynamics model is suited for straightforward and computationally
inexpensive cash flow simulations, which help to genuinely understand the
risk of a given static PEF portfolio since the underlying framework can pro-
cess detailed asset-level information. Here bottom-up portfolio aggregation
relies on conditional independence, i.e., the dependence between portfolio
companies is solely introduced by common covariates X. However, due to
the time-variant independent variables used within the Timing model, our
Monte Carlo simulation can capture the exit clustering effect observed in
times with excellent public market conditions (so-called hot exit markets).
In our reduced form model, a period with strong [weak] public equity market
performance increases [decreases] the probability of an exit in that period
for each deal held in the PEF portfolio. So we explicitly avoid a (self-
exciting point process like) modeling approach where observed deal exits
trigger further deal exits in the short term. The self-exciting access may be
even structurally wrong since exit clustering is probably best explained by
favorable public market conditions that are common for all deals11.

11Many authors find public market covariates that affect the exit decision and timing:
Giot & Schwienbacher (2007) use variable IPOACTIVITY. Jenkinson & Sousa (2015)
include the macroeconomic variables (i) local stock index return, (ii) capital commitment
index return, and (iii) Fed tightening index in their exit decision model; in their Cox model,
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5.2 Cash-Flow-at-Risk simulation

Liquidity and cash flow risk at the α-level for a given fixed horizon z can be
conveniently assessed by a portfolio-level Cash-Flow-at-Risk (CFaR) mea-
sure that relies on Monte Carlo simulation results

CFaRα,z(Y
(PF)) = inf {x ≥ 0 : FY (PF)(x, z) > α}

where the z-horizon specific CDF for the weighted portfolio multiple is given
by

FY (PF)(x, z) = P

[
x ≥

n∑
i=1

witYit1{yit≤z}

∣∣∣∣∣Ft

]
(6)

with portfolio weights wit. Monte Carlo simulation formally constitutes
the application of the Multiple conditional on Timing model specified
in section 3 with the parameter estimates from section 4 for each portfolio
company. Specifically, our simulation procedure relies on inverse transform
sampling, i.e.,

Ỹ = G−1
Y

(
ŨGY

∣∣∣ξY , X̃, ỹ)1{Ũπ>π0(X̃)} + 0

ỹ = S−1
y

(
Sy (t) · Ũy

∣∣∣ξy, X̃)
where the tilde symbolizes the simulated nature of a given random variable.
Possible future covariate process paths X̃ can be held fixed or re-simulated in
each iteration step. The default random variable Ũπ is distributed uniformly

i.i.d. and the bivariate uniforms
(
Ũy, ŨGY

)
are generated from the 180-

degree rotated Joe copula CopJoe.

they include country and exit year fixed effects. Cumming (2008) incorporates the MSCI
return prior to the exit. Schmidt et al. (2010) use multiple measures of hot exit markets.

22



5.3 Potential benefits of deal-level risk models

Risk regulation frameworks like Solvency II and Basel III privilege look-
through approaches that perform the risk assessment on the most granular
level. Hence, it is an interesting question if the risk evaluation of private
equity fund portfolios always benefits from applying the more detailed deal-
level models compared to fund-level models. Here, our two implicit assump-
tions are that (i) deal-level information is potentially useful (neglection is
potentially harmful) and (ii) deal-level information is best processed by deal-
level (not by fund-level) models.

From this perspective, deal-level models conceivably offer benefits for
different applications. The modeling of future fund-level fees is best stud-
ied on deal level to emulate complex carry arrangements. The analysis
of portfolio-level implications associated with particular industry and com-
pany stage allocations customarily requires deal-level knowledge. Especially
for small portfolios, deal-level models reveal diversification effects that are
hardly grasped by fund-level models.

CFaRα,z=∞ 3 deals, age 2 3 deals, age 8 15 deals, age 2 15 deals, age 8

α = 0.5% 0.0000 0.0061 0.2082 0.3737
α = 1% 0.0005 0.0134 0.2585 0.4410
α = 5% 0.0368 0.1073 0.4512 0.6543
α = 50% 0.9498 1.1130 1.3299 1.4815

Table 4: Monte Carlo simulation example. Cash-Flow-at-Risks with an
infinite horizon (i.e., quantile of final fund multiple) for our VC fund example.
VC funds with more deals and longer realized holding periods (simply called
age) are considered safer by our model.

Figure 3 and table 4 show a simplified Monte Carlo example designed
to emphasize the benefit of incorporating deal-level information in the risk
management context. Here, the cash flow profiles of four otherwise equal VC
funds with number of companies 3 and 15, respectively, and with deal ages
(i.e., holding period until now) 2 and 8, respectively, are compared12. The
study uses historical public market observations up to 2016-12-31; afterward,
one possible future path is generated by sampling random permutations from
the empirical data. Thus, all simulation iterations rely on the same public
market scenario. Further, to focus on the deal ages and the number of
companies in the respective fund, we set all deal-level RVPIs (V/C) to one

12As a technicality, for the funds with deal age equal to 2, one deal age is always set to
8 to justify equal vintage years for all four funds.
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Figure 3: Monte Carlo simulation example. The example compares the cash
flows associated with four generic VC funds. The empirical CDF equivalents
of equation (6) illustrate varying cash flow risk profiles when the number of
fund holdings shifts from 3 (in the left charts) to 15 (in the right charts) and
when deal ages shift from 2 (in the top charts) to 8 (in the bottom charts).
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and assume equal investment amounts per deal. Each run involves 5,000
iterations.

In figure 3 and table 4, our deal-level model provides considerably dis-
tinct exit cash flow profiles when the level of diversification or the deal ages
change. The cumulative distribution functions differ, especially in the lower
tails, which are particularly important for downside risk management. Typ-
ical fund-level models usually neglect the fund characteristics ’number of
underlying deals’ and ’average deal age’ and, thus, often cannot distinguish
funds from the same vintage year at all. Hence, risk management for small
PEF portfolios can substantially benefit from applying our deal-level model
instead of crude fund-level approaches that ignore deal-level information.

Deal-level models are particularly useful for static risk management, i.e.,
if we just want to assess the riskiness of the current (not future) portfolio
composition. The delicate question of how future capital calls are financed
can be conveniently disregarded in this static view that only considers the
investments presently held by the fund. Bongaerts & Charlier (2009) also
adopt this static view in their structural deal-level model for the regulatory
capital requirement under Basel II. When the investment cash flows asso-
ciated with new entries are of interest, models for the deal-by-deal entry
dynamics are a natural complement to our deal-level exit model. Here, the
discretized (deal-by-deal) modeling of entries again offers a higher granular-
ity than typical fund-level approaches like (Buchner et al., 2010, Paragraph:
Modeling Capital Drawdowns).

To summarize, a fair comparison between deal-level and fund-level cash
flow models is just feasible if (i) the deal-level model accounts for future
investment cash flows and (ii) the fund-level model accounts for available
deal-level information. Table 5 outlines situations where the application of
deal-level models seems especially suitable. On the other hand, there are, of
course, set-ups that favor fund-level models like, e.g., Buchner (2017).

6 Conclusion

From a methodological viewpoint, this paper takes a new look at the cash
flow stream that will be realized over the next years from the $4.99 trillion
assets held by private capital funds (as of September 2019; Source: Pre-
qin). More precisely, the divestment behavior of private equity fund deals
is studied by a joint copula model that formulates the exit Multiple of
a given fund investment conditionally on its exit Timing. Here, the asset-
level granularity enables the inclusion of many insightful covariates that are
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Table 5: Deal- vs. fund-level model comparison. Appropriateness of our
deal-level model and the fund-level model of Buchner (2017) in the risk
management context.

Our deal exit model Buchner (2017)

level deal-level fund-level
cash flows modeled exit cash flows con- & distributions
reasonable extension entry cash flows deal information
public covariates market return, high yield spread market return

Appropriate if:

portfolio size small big
portfolio composition heterogeneous homogeneous
deal idiosyncrasy high low
many co-investments yes no
industry matters yes no
future deal entries matter no yes
future commitments matter no yes
timing of future entries known unknown
modeling of fees explicit implicit

otherwise infeasible in pure fund-level approaches due to identifiability is-
sues. In our empirical analysis, public market and time-related predictors
significantly affect both the deal-level exit Timing and Multiple of BO
and VC investments. Realistic cash flow scenarios for a given static PEF
portfolio (ignoring future fund investments) can be ultimately obtained by
Monte Carlo simulations that draw on these model estimates.

In our view, sophisticated cash flow projections are a vital tool to im-
prove the risk understanding of PEF vehicles since yet private equity fund
stakes cannot be traded on liquid secondary markets. Further, the intrin-
sic risk of undiversified PEFs (with just a few company holdings) may be
commonly underestimated by models with implicit or explicit diversification
assumptions. On the other hand, our deal-level approach is capable of repro-
ducing the high default probabilities empirically observed for single BO or
VC deals. Naive fund investors may benefit from this improved risk percep-
tion, while confident fund managers may hardly consent to these estimates
in their subjective risk assessments.
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